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Introduction

Psychological tests or examinations are tools to measure abilities, attitudes or
skills of a person. Generally, tests are used to assess or to evaluate someone’s per-
formance in a specific subject. In educational measurement, one could think of;, for
example, tests for assessing someone’s proficiency in a foreign language (Dutch as
a Second Languange, NT2; Test of English as a Foreign Language, TOEFL), tests
for higher education admission programs (Graduate Record Examination, GRE;
Graduate Management Admission Test, GMAT; The Law School Admission Test,
LSAT), or licensure tests for professionals (Certified Public Accountants, CPA;
The United States Medical Licensing Examination, USML). In a broader sense,
tests can be used to reveal someone’s potential (e.g., IQ tests, personality tests,
health tests), or to help evaluating and developing new psychological theories.

It is essential to standardize tests to enable fair comparison and evaluation. In
practice, if a test possesses desirable content characteristics, it will be employed
several times until there is a need to replace it. If this is the case, new items will
be written and pretested. It is important to ensure that the old and the new version
of the test are parallel.

The concept of standardized tests has emerged in the development of item re-
sponse theory, IRT, (e.g., Hambleton, Swaminathan, & Rogers, 1991; Lord, 1980;
Rasch, 1960; van der Linden & Hambleton, 1997). For this theory, different tests
can be constructed, and even individualized to suit different ability levels, and still
function as the same yardstick, as long as the items are from the same domain.
IRT facilitates a single platform by parameterizing the items. As a result, tests
constructed under IRT yield scores that are comparable between test takers.

The possibility to construct different tests has stimulated the practice of item
banking. An item bank is a collection of items that are written, pretested, and cali-
brated. They might be replenished on a regular basis. It is important to ensure that
the bank contains enough items for all content categories so that content specifi-
cations for the tests can be met. From an item bank, tests are assembled according
to test specifications by using either mathematical programming techniques or
heuristic methods.
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This thesis deals with the need to maintain and to manage item banks. Items
are not obtained for free; much efforts and resources are invested to develop and
to calibrate items. Therefore, it is preferable to optimize item bank usage, without
compromising the quality of the tests.

1.1 Item Response Theory (IRT)

IRT uses probabilistic models to relate the response of a person to an item through
a function of the ability (or trait level, #) of the person. Parameters in IRT models
are divided into ability and item parameters. Various models exist to measure a
single ability (unidimensional IRT) and multiple abilities (multidimensional IRT).
In this thesis, we use the three-parameter logistic (3PL) unidimensional IRT. In the
3PL model, the probability of a response of an examinee to an item is explained by
three item parameters, namely parameter for item discrimination, item difficulty,
and guessing. The probability of an examinee answering item ¢ correctly is defined
as follows:

exp(a;0 + b;) (1)
1+ exp(a;f + b;)
where a;, b;, and c; are the discrimination, the difficulty, and the guessing parame-
ters of item ¢, and @ is the ability of the examinee. Item discrimination indicates
how well an item can distinguish low-ability from high-ability examinees. The
higher the value of this parameter, the better the item separates low and high abil-
ities. Item difficulty shows the difficulty level of an item, whereas item guessing
denotes a probability of an examinee answering an item correctly through guess-
ing.

Quantitative information can be obtained through a specific relationship be-
tween the item parameters and ability value of the examinee. This relationship
is the item information function (IIF). In the 3PL model, an item can only give
maximum information at one ability point. The higher the value of the item dis-
crimination parameter, the higher the maximum item information will be. Figure
1.1 illustrates Equation 1.1 at item difficulty equal to zero (b = 0) with various dis-
crimination and guessing values, and their item information function. Simply, an
item that is too easy or too difficult for an examinee will provide little information.
Measurement accuracy is directly related to item information.

Pi(0) = ci + (1 —¢)

1.2 Item Banking

Within the framework of IRT, one can estimate item parameters and ability in-
dependently. Specifically, item parameters are not group-dependent and ability
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Figure 1.1: Probability curves for answering item ¢ correctly (left) and their respective
item information function (right), solid line represents high discrimination and dashed line
low discriminacy whereas bold line low guessing and thin line high guessing parameter.

estimations are not test-dependent. Item parameter estimates obtained in differ-
ent groups of examinees will be the same, except for sampling errors, and ability
estimates obtained from different set of items will be the same, except for mea-
surement error (Hambleton, Swaminathan, & Rogers, 1991). Because of these
features, it is possible to design and construct tests to different specifications.

With these attractive benefits, for testing programs, it becomes practical to col-
lect and to store items for present and later use. An item bank serves as a resource
from which items are selected for their tests. An item bank normally contains spe-
cific additional information on the items such as their categorical attributes (e.g.,
item type), quantitative attributes (e.g., item parameters, word count, expected re-
sponse time), and other information such as the date of administration and the
frequency of use. A complete classification of item attributes is presented in van
der Linden (2005, Chapter 2).

An item bank is not a static entity. No single item can be used forever; items
may show parameter drift, become obsolete, or simply become known to candi-
date examinees (when they are used frequently). In testing programs, with tests
administered on a continual basis, items are produced and pretested to gradually
replace items in the bank (Way, Steffen, & Anderson, 1998). This process un-
doubtly causes fluctuations in the quality of the items in the bank. When items are
retired temporarily or permanently, there is a challenge to produce new items with
similar quality to replace them.

The task of developing new items is time consuming and the quality varies. It
is therefore important to manage item usage carefully. To regulate item usage, we
focus on the test assembly algorithms since they select which item will be in the
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test. To some extent, item usage is also influenced by the composition of the other
items in the bank. We address the topic of test assembly and item-bank design in
the following section.

1.3 Test Assembly

One major approach in test assembly is to use item information as a main criterium
(Birnbaum, 1968) for selecting items. An important condition in this case is that
the items fit the IRT model. It is desirable to obtain tests with high information
in order to achieve measurement precision. Of course, the desired precision level
depends on the goal of the tests. For example, for licensure tests, it is crucial to
measure precisely near a cut-off ability level, to yield accurate pass-fail decisions.

In many modern testing programs, content specifications are also important;
for example, test length, and the distribution of the items with respect to sets of
categorical attributes. It is also important to consider bounds on quantitative at-
tributes (e.g., word count or expected response time) of the items, or to exclude
items that cue the answer of the other items. All of these requirements should be
satisfied when the tests are assembled.

They can be addressed straighforwardly by using mathematical programming
methods. Test content and the statistical requirements are the test constraints. The
goal of mathematical programming is to find a set of solutions that meet a given set
of constraints. Furthermore, mathematical programming methods aim to obtain an
optimal solution, that is, the best solution with respect to the objective set by the
methods. A mixed integer programming (MIP) model is suitable to formulate test
assembly problem (Adema, 1990; van der Linden & Boekkooi-Timminga, 1989).
Decision variables in such model are binary to denote whether or not an item is
selected for the test. Various objectives can be used in test assembly. For exam-
ple, maximizing the lower bound of test information (maximin approach, van der
Linden & Boekkooi-Timminga, 1989), minimizing the deviation from target test
information (literatures), matching observed-score distribution (van der Linden &
Luecht, 1998), and maximizing test reliability (Adema & van der Linden, 1989;
Armstrong, Jones, & Wang, 1998). A more comprehensive coverage of possible
test assembly problems is given in van der Linden (2005).

The use of mathematical programming offers attractive possibilities to ana-
lyze the model. We can observe, for example, the impact of adding more con-
straints on the model, or whether some constraints appear to be difficult to satisfy
(Timminga, 1998; Timminga & Adema, 1996; Huitzing, 2003). When the prob-
lem cannot be solved within a reasonable time, heuristic methods can be useful
alternatives. Examples of the application of heuristic methods to test assembly
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problem are weight deviation methods (Luecht, 1998; Smith, 2005; Swanson &
Stocking, 1993) and Monte Carlo method (Belov & Armstrong, 2005).

1.3.1 Paper-and-Pencil (P&P) Tests

Also known as linear tests, paper-and-pencil (P&P) tests are designed to serve a
specific range of abilities at once. It means that a group of examinees will get the
same test regardless of their ability levels. Though it is possible for P&P tests to
use a computer for delivery, its common format is a booklet in which test questions
are placed in a certain order.

It is often necessary to have several versions of the test. For example, when
the test is offered at different testing sessions, or when the test is intended to ob-
serve the impact of some treatments (known as a pretest-posttest design, van der
Linden, 2005). Also, different versions may be required to be parallel to a refer-
ence test. Often, these versions are assembled in advance to allow test specialists
to scrutinize the content before they are administered.

The assembly of one test form may be simple. However, the assembly of mul-
tiple parallel tests requires a more careful approach. If the tests are assembled se-
quentially, the quality of the subsequent tests will decrease even though the item
bank contains enough items to support parallel tests. In the long run, this practice
may result in a serious depletion of some item bank section because best items are
always selected first. Practitioners realize that the tests should be assembled simu/-
taneously, to ensure uniform item usage in the bank. However, such task demands
an advanced software and computer power which were simply not available in the
early 1990s. The use of heuristic methods became an alternative and practical way
to solve parallel test assembly (e.g., Ackerman, 1989; Adema, 1992; Armstrong,
Jones, & Wu, 1992; Boekkooi-Timminga, 1990; Swanson & Stocking, 1993; van
der Linden & Adema, 1998).

Test assembly is achieved by directly selecting items from an item bank. Fluc-
tuations in the quality of the items in the bank will greatly influence the quality
of the tests assembled from it. Optimal item-bank design for P&P tests anticipates
this fluctuation (van der Linden, Veldkamp, & Reese, 2000). These authors pro-
posed the use of an item-pool blueprint as a tool to keep item bank quality uniform
over time. Their strategy was to observe and then to identify which items were re-
ally needed in the bank. In Chapter 5 of this thesis, a simulation study was used to
observe the potential of an item-pool blueprint approach to manage an item bank.

1.3.2 Computerized Adaptive Tests (CAT)

With the development of computers, it is possible to tailor the test to different abil-
ity levels. A computerized adaptive test (CAT) is a test that adapts automatically
to the ability of the examinee. It works like the practice of oral examiners where
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test questions are given sequentially, based on their impression of the examinee’s
ability in answering the previous questions.

In CAT, items are selected sequentially, according to the response of the ex-
aminee to the previous items. One popular selection criterium in CAT is maximum
test information at each of ability estimates (e.g., Kingsburry & Zara, 1991; Lord,
1980; Owen, 1975; Weiss, 1982). As a result, only items with the highest informa-
tion (at that ability estimate) will be chosen by the algorithm. Practitioners often
critize this selection algorithm, mainly because items with the highest informa-
tion are selected in the early stages when the ability estimation is still unstable. If
a CAT is constrained, i.e., it has to meet certain test specifications, care must be
taken to ensure that items are selected to satisfy these specifications. Stocking and
Swanson (1993) developed a heuristic method to select items for constrained CAT.
An exact method, called a shadow-test approach, has been proposed by van der
Linden (2000). In a shadow-test approach, a complete test that meets the whole set
of constraints is assembled at every stage of ability estimation, and one item from
this test will be administered to the examinee. In so doing, a test that is optimal
with respect to the objective and meets all test requirements can be obtained.

Experience with CAT has shown that usually only a small percentage of items
in an item bank is selected. Unbalanced item-bank usage will lead to two serious
problems. First, items of high exposure will be soon known to future examinees.
Second, it is a waste of resources to invest in writing, producing, and pretesting
items that appear almost never to be used for actual tests.

To overcome these problems, item-selection algorithms are modified in such a
way that no item will be used more frequently than at a maximum allowable rate.
Such algorithms are known as item-exposure control algorithms (e.g., Revuelta
& Ponsoda, 1998; Stocking & Lewis, 1998; Sympson & Hetter, 1985; van der
Linden & Chang, 2003; van der Linden & Veldkamp, 2004; Veldkamp, Eggen,
Verschoor, & Maroujenkov, 2004).

However, many exposure control algorithms are less successful in promoting
the use of underexposed items. A more effective approach would then be to limit
the presence of popular items in a bank. Realization of these ideas requires a
master bank to be equally divided into several operational banks which may share
some of the items (e.g., Ariel, Veldkamp, & van der Linden, 2004; Stocking &
Swanson, 1998). Mills and Steffen (2000) observed that such methods are also
effective to maintain uniform test quality over time.

Unbalanced item-bank usage in CAT raises the idea of designing item bank ef-
fectively. Unlike its P&P counterpart, for a CAT bank it is very difficult to decide
beforehand which items are needed in the bank. Veldkamp and van der Linden
(2000) used a computer simulation to determine the number and the ideal com-
position of the items with respect to their categorical and quantitative attributes.
A more tractable approach is presented in van der Linden, Ariel, & Veldkamp (in
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press), where a CAT pool is assembled as a set of linear tests. This idea is based
on the use of the shadow test approach in constrained CAT.

1.3.3 Multistage Tests (MST)

In a multistage test (MST), the advantages of CAT and P&P testing are combined.
Sets of items (testlet) are administered sequentially. Examinees proceed to a testlet
with a higher or with a lower difficulty level based on their (provisional) ability
estimate. For examinees, it is possible to review their answers before they move
to the next stage. The number of stages and difficulty levels are predetermined,
and the number of different paths possible for the examinees is much smaller than
for CAT. Also, for test specialist, the task of evaluating and reviewing actual test
content becomes manageable.

Operational MST programs require a large number of testlets to build several
versions of the tests. This strategy is essential to protect the security of the test
content, an issue that always has to be addressed in high stakes testing (e.g., li-
censure testing). Test assembly for MST is similar with parallel test assembly for
P&P tests.

To anticipate uncertainty in the quality of the future assembly, it is necessary
to maximize the use of items presently available in the bank. Optimal item-bank
usage can be realized by assembling a maximum number of testlets, to avoid the
accumulation of high quality items in a small number of testlets. Not all testlets
are operational; some testlets are returned to the item bank, and will be employed
to maintain uniform quality of the item bank over time. Such practice mimics
a dummy test approach (Adema, 1990; van der Linden & Adema, 1998). These
authors have successfully shown that parallel tests can be obtained by assembling
the tests sequentially with the help of a dummy test.

To find the maximum number of testlets from a given bank, one can adopt
popular numerical methods to locate a root of a mathematical function, such as
the bisection method (e.g., Atkinson, 1989). The bisection method starts with an
interval which is guaranteed to contain the number to be found. For example, for a
bank of 1000 items with a test length of 50, one can start with interval [0,20]. The
interval is bisected iteratively and, the midpoint is used to determine which half of
the interval should be kept, by examining whether this midpoint gives feasibility
to the model. In that example, the midpoint is 10. If the model is feasible for 10
number of testlets, then we keep [10,20]; otherwise we keep [0,10]. And so on,
until the length of the interval is equal to one, and both values are evaluated to
decide which one is taken. This searching method is potentially faster and does
not need a sophisticated guess.

Alternatively, the maximum number of testlets can be estimated as follows.
First, an initial number is used to solve the model. If the model is infeasible, the
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number is lowered by one and the model is solved again. The process is continued
until the model is feasible. In this traditional method, a good guess is needed to
improve the searching time.

Note that iterative methods are used only to find the maximum number of
testlets. For the real assembly, the transformation of item bank to testlet banks
should be done simultaneously, to avoid unbalanced item usage. With the fast de-
velopment in computer and software, the assembly of maximum number of testlets
is doable (Ariel, Veldkamp, & Breithaupt, 2004; Wu, 2001). In Chapter 4, we il-
lustrate the transformation of item bank to testlet banks.

1.4 Overview of the Thesis

The focus of this thesis is on item bank management. Various tools to assemble
and to manage item banks effectively are presented. A short overview is given in
this section.

In Chapter 2, we propose alternative methods to assemble several item banks
from a master bank. These item banks can be mutually exclusive (no item overlap),
and the banks should possess similar quality to support fair testing. Empirical ex-
amples show that overlap between item banks is more effective than non-overlap
in improving item usage, especially if they contain few popular items. However,
forcing the use of underexposed items might result in reduced measurement pre-
cision.

One reason for unbalanced item-bank usage in adaptive testing may be an
undesirable correlational structure between the content attributes of the items and
their statistical information in a CAT bank. To minimize this effect, in Chapter 3
we explore the idea of a CAT bank as a set of linear tests. It is motivated by the use
of a shadow-test approach in selecting items for constrained CAT. In shadow-test
approach, a linear test is assembled at every ability estimation, to ensure that test
specifications are met, but only one item from it is administered. The results show
that the resulting CAT bank is effective in equalizing item usage while the error
measurement is uniformly low.

As for a multistage testing design, a large number of testlets (short linear tests)
is needed to provide parallel versions of the tests. The problem is identical to that
of assembling a maximum number possible parallel linear tests. In Chapter 4, we
illustrate optimal transformation of an item bank to a testlet bank. In this study,
different weights are used to highlight the importance of some testlets with respect
to their difficulty level.

A dynamic process of adding into and removing items from an item bank is
unavoidable. This process can affect the quality of the bank, and it threatens the
quality of the tests. In Chapter 5, a simulation study is conducted to observe what



may happen to the quality of an item bank over several testing periods. Scenarios
for different factors that may influence the quality of the bank (initial bank, man-
agement level, and item production) are used in the simulation study. The results
show that the use of an optimal item-pool blueprint is effective for maintaining the
quality of item banks.

The results of the simulation study in Chapter 5 also indicate that the accumu-
lation of unselected items may deteriorate the quality of an item bank. In Chapter
6, various potential methods to analyze the causes of unselected items are given,
and the application of one method is illustrated in an empirical study. The results
of the simulation study suggest that there are items that always have to be selected,
thus, they are critical for the assembly of feasible tests. The presence of critical
items may trigger a strong interaction between their attributes and other items’
attributes. This possible condition reinforces the need of a balanced composition
of item banks.
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Constructing Rotating Item Pools

Abstract

Preventing items in adaptive testing from being over- or underexposed is one of
the main problems in computerized adaptive testing. Though the problem of over-
exposed items can be solved using a probabilistic item-exposure control method,
such methods are unable to deal with the problem of underexposed items. Using
a system of rotating item pools, on the other hand, is a method that potentially
solves both problems. In this method, a master pool is divided into (possibly over-
lapping) smaller item pools which are required to have similar distributions of
content and statistical attributes. These pools are rotated among the testing sites
to realize desirable exposure rates for the items. In this paper, a test assembly
model for the problem of dividing a master pool into a set of smaller pools is pre-
sented. The model was motivated by Gulliksen’s (1950) matched random subtests
method. Different methods to solve the model are proposed. An item pool from
the Law School Admission Test (LSAT) was used to evaluate the performances of
computerized adaptive tests from systems of rotating item pools constructed using
these methods.

Key words: Computerized adaptive testing, item pool design, matched random
subtests method, mathematical programming, rotating item pools, test assembly.

This paper has been published as: Ariel, A., Veldkamp, B.P,, & van der Linden,
W.J. (2004). Constructing rotating item pools for constrained adaptive testing.
Journal of Educational Measurement, 41, 345-359.
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2.1 Introduction

In paper-and-pencil (P&P) testing, the same set of items is administered to a pop-
ulation of examinees. A disadvantage of this testing format is its inability to deal
with a broad range of abilities in the population. This disadvantage is remedied by
computerized adaptive testing (CAT) where each examinee takes a test with items
selected to match their ability estimates during the test. In doing so, CAT emulates
an important aspect of oral examination, namely the practice of an examiner who
chooses a more difficult question if the examinee responds correctly and an easier
question if (s)he responds incorrectly. A CAT algorithm implements this practice
by updating the examinee’s ability estimate, 0, and choosing the next item to be
optimal at this estimate.

Maximum-information and Bayesian item selection are commonly used crite-
ria to select items (Hambleton, Swaminathan, & Rogers, 1991; van der Linden &
Pashley, 2000). When an item is selected to maximize information at the current
ability estimate, the algorithm prefers items for which both the difference between
the current ability estimate 6 and the item difficulty parameter b; is small and the
item discrimination parameter a; is high (Veerkamp & Berger, 1999). These items
are of high quality but, unfortunately, for most item pools, their number is low. For
a population of examinees, these items are selected more often and the high ex-
posure rate of these items makes them vulnerable to security breaches. Typically,
the other items are hardly selected at all and the resources invested in writing and
calibrating them have futile effect (Veldkamp, 2001).

Various methods have been proposed to solve this problem, including methods
of item-exposure rate control, item pool design, and rotating item pools. Sympson
and Hetter (1985) introduced a probabilistic approach to control the exposure rate
of every item in the pool (for a review of this method, see van der Linden, 2003).
McBride, Wetzel and Hetter (1997) advocated an algorithm that reduced the ex-
posure rates of items most popular at the beginning of the test. Veldkamp and
van der Linden (2000) suggested to calculate a blueprint for the item pool such
that distribution of the exposure rates for the items in the pool tends to be even.
Stocking and Swanson (1998) introduced a method of rotating item pools with the
same goal of even exposure rates. The item pools in this method are assembled
from a master pool by splitting it into several smaller pools. The item pools are
randomly rotated during operational testing. The goal of more uniformly distrib-
uted item-exposure rates is realized by assigning items with higher exposure rates
to a smaller number of pools and items with lower rates to a larger number of
pools. Unfortunately, studies of this method are rare. It is the purpose of this paper
to propose some methods for assembling systems of rotating item pools from a
given master pool and evaluate their properties.
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In this paper, several methods to construct the system of rotating item pools
are presented. All methods are based on a two-stage assignment process, in which
items are first assigned to interim sets of (closely) parallel items and then from
these sets to item pools. This process is optimized using the idea underlying the
matched random subtests method introduced by Gulliksen (1950) to split a test
into parallel subtests to the largest possible split-half reliability, which is always a
lower bound to classical test reliability. Interestingly, the same idea can be gener-
alized to the problem of assembling a system of rotating items pools. To illustrate
how to put our methods into practice, several examples using an item pool from
the Law School Admission Test (LSAT) are given. A constrained CAT algorithm
was applied to evaluate the performance of the systems of rotating item pools
constructed by these methods.

2.2 Current Methods to Construct Rotating Item Pools

Way (1998) observes that probabilistic item-exposure control may be inadequate
to guarantee a secure CAT program. His suggestion is that a system of rotating
item pools may be a more promising approach to prevent item compromise. Way,
Steffen, and Anderson (1998) discuss several examples of strategies of managing
rotating item pools and using such systems to enhance the security of the comput-
erized testing.

For systems of rotating item pools to be effective, the availability of automated
item-selection procedures to assemble such pools from a master pool is crucial.
These procedures should have the following properties. First, each pool should
have similar distributions of content and statistical attributes to support uniform
measurement quality to examinees. Second, the composition of the pools should
support uniform usage of the items. Third, the pools should have enough items to
allow item selection for the adaptive tests to be constrained with respect to all the
specifications to be imposed on the test.

Stocking and Swanson (1998) demonstrate a method to construct rotating
item pools. In their method, the items in the master pool are assigned to pools
by their weighted deviations model (WDM). The first step in this method is to cal-
culate an average (nonoverlapping) pool from the master pool. The actual pools
are then assembled to minimize the differences between these pools and the aver-
age pools with respect to (1) the item attributes in the constraints to be imposed on
the CAT and (2) item information at selected 6 levels. In doing so, the deviations
are weighed to get a single objective function. The resulting pools are expected to
have similar distributions of content and statistical attributes and, hence, to support
each test administration equally well.
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Two versions of the Stocking-Swanson method exists, one with nonoverlap-
ping and another with overlapping item pools. The former was presented above.
However, to get more uniformly distributed exposure rates, a system of overlap-
ping item pools is more efficient. This system allows us to reduce the exposure rate
of more popular items by assigning them to a smaller set of pools and to increase
the usage of less popular items by assigning them to a larger set. Overlapping
pools are assembled by first calculating the required numbers of pools the items
should figure in and then assigning the items to the pools until these numbers
are realized. For empirical results with these methods, see Stocking and Swanson
(1998).

2.3 New Methods for Constructing Rotating Item Pools

The new methods proposed for constructing rotating item pools are all based on
techniques of constrained combinatorial optimization. The objective functions in
the optimization problems focus on the values of the item parameters in the pools.
The goal is to give the pools identical distributions of parameters. At the same
time, constraints are introduced to match the pools in terms of content attributes
and to control the overlap between the pools.

All methods were motivated by Gulliksen’s (1950) matched random subtests
method. Gulliksen’s method was proposed to split a test into two halves that are
statistically as closely parallel as possible. The split-half reliability calculated from
these halves is a lower bound to the classical test reliability. Gulliksen’s method
has two stages. In the first stage, the items are assigned to pairs of items that have
minimal differences between their parameter values. In the second stage, the items
are assigned to test halves. A formalization of Gulliksen’s method as a problem of
constrained combinatorial optimization is given in van der Linden and Boekkooi-
Timminga (1988).

We apply the same method to the problem of splitting a master pool into a set
of smaller pools for use as rotating item pools in CAT. To illustrate the method,
its stages for the case of nonoverlapping pools are briefly described: First, interim
sets of items are assembled, each of a size equal to the number of (nonoverlap-
ping) pools to be constructed. Second, items in the same interim set are assigned
to different pools. If the composition of these pools is required to meet certain
constraints to support CAT, the assignment is subject to these constraints.

Figure 2.1 illustrates the general process of dividing a master pool into four
nonoverlapping pools. In this figure, to get four nonoverlapping pools, the n items
in the master pool are assigned to n/4 interim sets, each consisting of four different
items.

The two stages are explained in more detail as follows.
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Stage 1 Stage 2

Pool 1
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/ C] Pool 4
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Interim Set (n/4)th

I

Figure 2.1: The process of dividing a master pool into four nonoverlapping pools

2.3.1 Stage 1: Assigning Items to Interim Sets

In the first stage, the items in the master pool are assigned to interim sets. For
notational simplicity, we formulate the optimization problem for interim sets con-
sisting of two items. Generalization to larger interim sets is straightforward.

A metric ;5 is used to represent the differences between items 4 and j in
interim sets. If the goal is to minimize the differences between the values of the
items for the a and b parameters in the sets, a possible metric for these differences
is

8ij = lai — aj| +w|b; — by, @.1)

where w is a parameter that can be used to correct for differences between the
scales of the two parameters. Other types of metric and larger numbers of item
parameters are possible.

The problem of assigning items to interim sets can be formulated as a 0-1
mathematical programming problem with decision variables, x;;,7 # j = 1, ..., I,
which are equal to 1 if item ¢ and j are chosen in the same set and are equal
to 0 otherwise, where I represents the number of items in the master pool. The
objective function is

I-1 I
minz Z 5@'1‘@' (2-2)

i=1 j=i+1
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subject to
w4+ @i =195 (2.3)
zég Z;j
The constraint in (2.3) is to guarantee that every item is assigned to an interim set
only once (van der Linden and Boekkooi-Timminga, 1988).

2.3.2 Stage 2: Assigning Items to Pools

In the second stage, the items in the interim sets are assigned to the item pools.
Different assignment models for the assignment of items to nonoverlapping and
overlapping pools are formulated.

Nonoverlapping Pools

The general idea in generating the item pools is to make them as similar as possi-
ble. In the mathematical programming model below, the objective function mini-
mizes the differences between the total information in the pools at several ability
values, while constraints are introduced to assign every item exactly once.

The model can be formulated as

min z 2.4)

subject to

( J
D L0k — > LiOk)yjp > —2, Y0k, 5,p, s # p (2.6)
( J
> yis=1,Vs 2.7)
1€Qr
> yis = 1,Vi (2.8)
yis € {0,1} 2.9)

where ¢ and j are indices for the items, (), is the rth interim set, s and p indicate
item pools, 0 is ability level k, I;(0}) is the information about 6y, in item 4, and
yis 18 a decision variable that is equal to one if item 7 is assigned to pool s and
equal to zero otherwise.

In (2.5)-(2.6), the difference between the total information in the item pools
at the ability values 6 are constrained to be in the interval (—z, 2). The size of
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this interval is minimized in (2.4). The constraints in (2.7) require items in the
same interim set to be assigned to different pools. The constraints in (2.8) guar-
antee that all items are assigned once, whereas the constraints in (2.9) define the
decision variables to be 0-1. This model can be modified to allow for the case of
overlapping pools. Moreover, the model can be extended to allow for additional
constraints on the test required to deal with such issues as test content and word
count. We will address these topics below.

Overlapping Pools

Overlapping item pools are obtained by changing the constraint on number of
times an item is assigned to a pool in (2.8). This constraint is then replaced by

> yis < nl, Vi (2.10)

> vis =, Vi @.11)

with n(") and n,. denoting the maximum and minimum number of item replica-
tions admitted, respectively. Unpopular items should have larger values n(") and
n, and popular items should have lower values.

Whether or not an item is popular is usually known only after conducting
a CAT simulation. Based on items performance in the CAT algorithm, we then
can decide what values n(") and n, should have. However, we can also decide on
these values using the values of the items for the discrimination parameter (see
empirical examples below).

Additional Content Constraints

The model previously described does not allow for possible additional content
constraints on the CAT yet. Suppose, for example, that the CAT has to be con-
strained with respect to item type and word counts. In order to ensure that the
pools have comparable distributions of these item attributes, the model in Stage 2
has to be extended with the following constraints:

> Yis > 1, Vs (2.12)
iEV"L

> yis < nl™ Vs 2.13)
1€V

> wiyis > nu, Vs (2.14)

7
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> wiyis < n™), Vs (2.15)
i

where V,,, is the set of items of type m in the master pool, w; is the word count
of item ¢, n,,, and n,, are the lower bounds on the number of items of type m and
the word count in the test, respectively, and n("™) and n(*) are the upper bounds
on these attributes.

2.4 Algorithms for Solving the Models

Various algorithms for solving the previous two types of models are presented. We
first discuss the methods for assigning items to interim sets.

2.4.1 Assigning Items to Interim Sets

For a system of rotating nonoverlapping item pools, the number of parallel items
in every interim set is equal to the number of pools to be created. Various methods
for assigning items to interim sets are given.

Sequential Assignment

A simple method would be to use a greedy heuristic. This heuristic has been
applied to test assembly problems in combination with the Weighted Deviation
Model (Stocking & Swanson, 1993) and in combination with the Normalized
Weighted Absolute Deviation Heuristic (Luecht, 1998). When this heuristic is ap-
plied to solve the model, the interim sets are constructed sequentially, that is, items
with the smallest value for (2.1) are selected until all items have been used. It is
obvious that this approach is easy to implement, but does have some drawbacks.
For each subsequent item, the value of (2.1) will be larger and the quality of the
interim sets will therefore deteriorate. Therefore a method based on simultaneous
assembly of all interim sets is proposed.

Simultaneous assignment

If the number of pools to be assembled increases, the combinatorial optimization
problem involved in their assembly becomes larger and we may soon reach a point
at which a heuristic is needed to solve the model. In the empirical example below,
we used a heuristic method known as simulated annealing. Simulated annealing
is an iterative Monte Carlo method. At each step a candidate for a new solution is
generated by randomly modifying the previous solution, after which it is decided
whether this candidate is or is not accepted. An attractive feature of simulated an-
nealing is that it accepts a worse solution with a nonzero probability. Typically,



19

the probability becomes smaller after some iterations. This feature allows the al-
gorithm to backtrack if it gets stuck in a bad path. The algorithm is terminated as
soon as no further improvement can be made. Examples of a earlier applications
of this heuristic to test assembly problems are given in van der Linden, Veldkamp
and Carlson (2004) and Veldkamp (1999). A more theoretical explanation of sim-
ulated annealing can be found, for example, in van Laarhoven and Aarts (1987).

A simple but effective implementation of simulated annealing for the cur-
rent problem is to generate new interim sets from randomly selected old sets. We
initialized the algorithm solution by assigning all items to all interim sets. This
initialization is possible because the final solution does not depend on the initial
solution. (If the number of items in the master pool is not a multiplicity of the
number of pools, a dummy interim set has to be created to which the remaining
items are assigned.) Candidate interim sets were then constructed by randomly
swapping items between sets. The metric in (2.2) was used to evaluate the can-
didate sets against the old sets. If the new value for the objective function was
smaller, the candidate sets were accepted with probability one. If it was larger, the
decision was made with a probability. At the next iteration step, new candidates
were generated from the current interim sets.

2.4.2 Assigning Items to Pools

Two methods for assignment of items from interim sets to item pools are dis-
cussed.

Random Assignment Method

Because in the first stage of the method the interim sets are constructed to be
as similar as possible, it may be possible to assign items in the same interim set
randomly to item pools. If items in all interim sets are assigned, we may still have
a dummy set that had to be created because the number of items in the master
pool was not a multiplicity of the number of pools. The items in this set can also
be assigned randomly. However, in the empirical example below, the information
functions for each pool was calculated and the items were assigned to the pools
with the smallest values for these functions.

Mathematical Programming

A more precise method is to solve the model in (2.4) until (2.9) and the additional
constraints in (2.12) and (2.14) using a mathematical programming algorithm. Use
of such algorithms is recommended especially when sequential assignment results
in quick deterioration of the value of the objective function for the interim sets. In
the empirical study below we used one of the standard algorithms in the mathe-
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Figure 2.2: A scatter plot of item discrimination (IRT a) and item difficulty (IRT b) para-
meter

matical programming software packages AIMMS (Paragon Decision Technology,
2003).

2.4.3 Choosing the Number of Overlapping Pools

If overlapping pools are to be constructed, the bounds on the number of times an
item can be assigned, n(") and n,, have to be specified for each item. The choice
of these numbers can either be based on the values of the item parameters or on the
actual exposure rates of the items. The first method is based on the discrimination
parameter of the items. Since items with higher a; values have a larger chance
of being selected, such items should be given low values for n(") and n,. On the
other hand, items with low a; have a low probability of being selected and should
be given higher values for n(") and n,.. The second method is based on the actual
exposure rates of the items. Items with high exposure rates are given low values
for both n(") and n,., while items with low exposure rates are given high values.

2.5 Empirical Example

A previous pool of 2,131 items from the LSAT fitting the 3-parameter logistic
model (Hambleton, Swaminathan & Rogers, 1991) was used as the master pool.
Figure 2.2 shows the distribution of the values for the a; and b; parameters for the
items in the pool. We ignored the ¢; parameter because its variability was small
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and this parameter typically does hardly have any impact on the composition of
the item pools.

The items in the master pool were of nine different types, leading to 20 content
constraints. Because word counts of the items were available we used constraints
to match the word counts of the pools as well. All constraints appeared relatively
easy to satisfy. In this study, we first classified the items in the master pool based
on their type and then solved the (extended) model in (2.1)-(2.3) per item type. The
benefit of this approach was that the model in (2.4)-(2.15) reduced proportionally
and (2.12)-(2.13) could be ignored. Observed that when the number of item of a
certain type was small, the number of nonoverlapping pools produced would be
limited since each pool had to satisfy (2.12)-(2.13).

Following Stocking’s (1994) recommendation that the size of a CAT item
pool size be at least 12 times the length of the adaptive test (which was 24 in our
study), at most four nonoverlapping pools could be produced. The same restriction
did not apply for the case of overlapping pools, however, because it allowed for
the duplication of some items to meet (2.12)-(2.13). As a result, we were able to
assemble one system of nonoverlapping pools with four pools and two different
systems of overlapping pools with six and eight pools.

All item pools in this study were assembled using an objective function based
on the metric in (2.1), with w = 1. All results were evaluated through a CAT
simulation study. The CAT algorithm in these studies was based on a constrained
CAT with shadow tests approach (van der Linden, 2000). In this approach, prior to
the selection of an item first a full test meeting all constraints is assembled. From
this test, the most informative item is administered to the examinee. After the abil-
ity estimate is updated, the shadow test is reassembled keeping all items already
administered. The process continues until the required number of items admin-
istered is reached. The shadow tests were calculated using the AIMMS (2003)
optimization software package. Test length was fixed at 24 items and the values of
the examinees for the ability parameter were randomly drawn from the standard
normal distribution. Abilities were estimated by the method of maximum likeli-
hood estimation (MLE). As long as the simulated responses for an examinee were
all correct or all incorrect, the ability estimate for the examinee was set equal to
3 and -3, respectively. In each condition, 1,000 examinees were simulated and
ability estimation was always initialized at § = 0.

To evaluate the performances of the methods, the exposure rates of the items
and the bias and mean squared error (MSE) functions for the ability estimators
were calculated. No method of probabilistic item-exposure control was used; the
effects of such methods would have confounded the evaluation of impact of the
pool assembly methods on the exposure rates of the items. In a practical applica-
tion, however, the use of additional exposure control may be necessary.
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2.5.1 Nonoverlapping Item Pools

The performances of all four possible combinations of the methods of sequential
and simultaneous assignment of items to interim sets and random assignment and
mathematical programming were compared. Each combination was evaluated us-
ing CAT simulations. The simulations were based on the full systems of rotating
pools, each with four nonoverlapping pools. Because each pool had approximately
500 items, each evaluation was based on approximately 2,000 items. In addition,
CAT administrations directly from the master pool were simulated. The results
for CAT from the master pool served as a point of reference for our evaluation of
the results in the other four conditions. In the mathematical programming method,
item information was controlled at 8;, =-1,0, and 1.

Figure 2.3 shows the item exposure rates, bias, and MSE for CAT from all
item pools assembled by the four combinations of methods as well as directly
from the master pool. For each method, the rates of only 600 of the items (out
of the total of 2,000 items) are given; the rates of all other items were equal to
zero. The highest exposure rate for an item in CAT from nonoverlapping pools
was less than 0.3. However, for CAT from the master pool the highest rate was
equal to 1.0. Figure 2.3 also reveals that the number of items with nonzero rates
is larger for CAT from nonoverlapping pools. These results show that, compared
with CAT from the master pool, CAT from nonoverlapping pools improved the
exposure rates of the items equally well for all four methods used to construct
these pools.

Both the bias and the MSE functions are lower for CAT from the master pool
than from nonoverlapping pools. The reason is the fact that during CAT from the
master pool all items were available for selection for each of the examinees where
with CAT from the nonoverlapping pools each item had to selected from a smaller
set. For all practical purposes, the differences are small though. The differences
between the functions for the four conditions with rotating item pools were also
negligible.

2.5.2 Overlapping Item Pools

Unlike the previous study, only the second stage was used to construct overlapping
pools. The upper and lower bounds n(") and n,. to the overlap in (2.10)-(2.11) were
determined using the two methods presented below. For each method, systems of
six and eight overlapping item pools were created from the master pool.

The first method used to determine the upper and lower bounds on the item
overlap between pools was based on the values of the items in the master pool
for the discrimination parameter. These values were in the interval [0.2,1.7]. This
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interval was divided into equally wide intervals, six and eight intervals for the
cases of six and eight overlapping pools, respectively. Items with the highest value
for the a; parameter (the first interval) were assigned only once (n(") and n, are
equal to 1), items in the second interval twice (n(T) and n, are equal to 2), etc.

The second method was based on the empirical exposure rates of the items.
Using the exposure rates in the first study, the items were divided into two sets. The
criterion was an exposure rate below or above 0.5. The items with larger exposure
rates were assigned only once, the items with smaller rates were assigned to all
item pools.

The estimated exposure rates as well as the bias and MSE functions for both
methods are given in Figure 2.4. For items that were assigned to multiple pools,
the exposure rates were cumulated across pools. The exposure rates were slightly
more favorable than in Figure 2.3 but showed the same pattern. Also, both for
the case of six and eight overlapping pools, the method for setting the bounds
n(") and n, based on empirical exposure rates outperformed the method based on
the discriminacy parameter. Also, the differences between the two methods were
larger for the case of eight than six pools. However, these more favorable exposure
rates were obtained at the costs of slightly higher bias and MSE.

The differences in results between the methods for setting bounds on item
overlap follow directly from the criterion on which they were based. In the method
based on empirical exposure rates, every pool contains limited number of good
items because these items are assigned to only one pool. As a result, CAT algo-
rithm is forced to choose considerable numbers of worse items and the errors in
the ability estimates increase. For the method based on discriminacy values, only
the items in the highest category are assigned once. Because the item pools have
larger numbers of good items, the estimation errors are smaller but the worse items
remain hardly used at all.

2.6 Discussion

The methods for constructing item pools presented in this paper are intended to
optimize or to maximize the use of test items in CAT. It was shown that CAT
from rotating item pools that do not overlap can improve the usage of items. As
shown in Figure 2.3, the item exposure rates for CAT from nonoverlapping item
pools were substantially better than for CAT directly from the master pool. The
differences found between the exposure rates and statistical quality of the abil-
ity estimates of the four combinations of methods used to assemble these pools
were generally negligible, though. This finding seems to suggest that best strat-
egy in real-life applications is to choose a method from these four that is easy to
implement under local constraints.
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Though the use of nonoverlapping item pools did not dramatically increase
the exposure rates of the less frequently items, the use of overlapping pools was
more successful in this respect. Especially the results obtained when the method
for setting the bounds (") and n, was based on empirical exposure rate were
promising. Key to these results seems to be the fact that larger numbers of popular
items were not allowed to be assigned to more than one pool. As a result, the CAT
algorithm was forced to select larger numbers of less popular items, which thus
obtained larger exposure rates.

The experimental results also showed that improving the exposure rates of the
items tends to results in larger errors for the ability estimates. This trade-off should
not come as a surprise: More uniform item exposure rates can only be obtained by
imposing more severe constraints on the item selection. These constraints result in
a lower value for the objective function optimized during item selection, that is, in
less information about the examinees’ abilities in the test. However, it is the opin-
ion of the authors that the size of the increase of these errors in the present studies
was still acceptably low and could easily have been compensated, for example, by
a small increase in the length of the test. The best possible way to deal with these
errors is topic of further research.

The empirical study shows that implementation of the methods proposed in
this paper is straightforward. In theory, the methods can be applied to construct
systems with large numbers of rotating item pools. The only possible obstacle is
limited availability of some types of items in the master pool. Though it seems
attractive to duplicate such items and assign them to overlapping pools, hence
there is virtually no bound on the number of overlapping pools possible, we should
be aware of the possible adverse effects of this measure on the exposure rates of
some of the items as well as a possible increase in measurement error.
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Assembling CAT’s Pool as a Set of Linear
Tests

Abstract

Test-item writing efforts typically results in item pools with an undesirable cor-
relational structure between the content attributes of the items and their statistical
information. If such pools are used in computerized adaptive testing (CAT), the
algorithm may be forced to select items with less than optimal information, that
violate the content constraints, and/or have unfavorable exposure rates. Though at
first sight somewhat counterintuitive, it is shown that if the CAT pool is assembled
as a set of linear test forms, undesirable correlations can be broken down effec-
tively. It is proposed to assembly such pools using a mixed integer programming
model with constraints that guarantee that each test meets all content specifica-
tions and an objective function that requires them to have maximal information at
a well-chosen distribution of ability values. An empirical example with a previ-
ous master pool from the Law School Admission Test (LSAT) yielded a CAT with
nearly uniform bias and mean-squared error functions for the ability estimator and
item-exposure rates that satisfied the target for all items in the pool.

Key words: Assembling multiple test forms, computerized adaptive testing, item
pool design, mixed integer programming, shadow test approach.

This paper has been accepted for publication in Journal of Educational and Be-
havioral Statistics.
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3.1 Introduction

Ideally, an adaptive testing program should offer each examinee a short test that
is informative at his or her ability level and meets all content specifications. Also,
particularly in high-stakes testing, to avoid risking the security of its items, the
selection of the items in the test should not be restricted to a small subset of the
pool. Item-selection algorithms have been developed to realize these goals in the
best possible way. For example, it is now common to have CAT algorithms select
items that maximize Fisher’s information in the test or minimize the posterior
variance of the examinee’s ability (van der Linden & Pashley, 2000), balance the
test content by spiraling item selection over subsets of item in the pool (Kingsbury
& Zara, 1991), minimizing weighted deviations from bounds on content categories
(Stocking & Swanson, 1993) or realizing constraints on test content through a
shadow test approach (van der Linden, 2000), and control item exposure rates
by adopting a random component in the selection procedure (Sympson & Hetter,
1985).

Nevertheless, though these methods are potentially powerful, their actual suc-
cess is ultimately constrained by the composition of the item pool. For example,
ability estimation may be less accurate than anticipated if several of the most in-
formative items in the pool happen to have attributes that are excluded by some
of the content specifications. Also, the items in the pool may have the majority of
the required content attributes but several of them may miss one or two important
attributes. If such cases occur, the item pool looses its efficiency because the CAT
algorithm has to compromise between the necessity to select tests that meet all
content specifications, have high information at the examinees’ ability level, and
do not overexposure a small set of items.

Observe that it is not necessarily the marginal distributions of the content or
statistical attributes of the items in the pool that may make an item pool less ef-
ficient, but the fact that items with certain combinations of attributes are scarce.
This observation is consistent with the notion that the problem of optimal assem-
bly of an item pool should be viewed as an instance of combinatorial optimization
(Nemhauser & Wolsey, 1999). Intuitively, an optimal item pool would consist of a
maximal number of combinations of items that (1) meet all content specifications
for the test and (2) are most informative at a series of ability levels reflecting the
shape of the distribution of the ability estimates for a population of examinees.
Observe that the second requirement is not only necessary to make the adaptive
test informative for each examinee but also to yield exposure rates for the items in
the pool that are below a realistic target value.

Though it may seem a step backward to more rigid traditional group-based
paper-and-pencil testing, it is instructive to compare these two requirements with
the practice of assembling linear test forms in testing programs that have such a
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format. In such programs, rather than assembling one individual test form at a
time, it is common to assemble a set of parallel test forms from a mastery pool
at the beginning of a new planning period to serve all of its testing sessions and
locations. If the program is item response theory (IRT) based, these forms are
parallel in that each of them meets the same content specifications and the same
target for the test information function. The set of these forms can be viewed as
the operational “item pool” during the planning period of the program.

If the same pool of items were to be used for a CAT version of the program,
its composition as a set of tests would guarantee the pool to have a sufficiently
large number of combinations of items meeting the content specifications. In fact,
because the CAT algorithm would mix and match between the different tests, the
actual number is much larger than the number of individual tests in the pool. How-
ever, because these combinations would tend to be optimal at ability levels near
the center of the population distribution, the CAT algorithm would only be able to
produce ability estimates with the same accuracy for examinees from the center of
the population distribution if it compromised the content of the test and/or the ex-
posure rates of some of the items in the pool. Intuitively, the need to compromise
would be minimal if the set of individual tests in the pool kept its composition
but had maximum information at a distribution of ability levels approximating the
shape of the population of examinees.

In this paper, the idea of an item pool consisting of a set of fixed tests optimal
at a distribution ability levels reflecting the population of examinees is elaborated
for the case of CAT based on the shadow test approach (van der Linden, 2000; van
der Linden & Reese, 1998). In this approach, the items in the CAT are selected
not from the pool but from shadow tests assembled before the selection of each
new item. Shadow tests are tests that (1) meet all of the content specifications for
the adaptive test, (2) contain all items already administered to the examinee, and
(3) are optimal at the examinee’s current ability estimate. The item that is actually
administered is the most informative item in the shadow test among those that
the examinee has not seen before. Adaptive testing with shadow tests guarantees
test administrations that always meet all content specifications (i.e., are feasible
with respect to the content constraints) and have optimal ability estimation. The
assembly of shadow tests in real time has become possible by the speed of modern
computers and the use of software packages for linear programming (LP), such as
the CPLEX package used in the empirical example below (ILOG, 2002).

The process of CAT with shadow tests is illustrated graphically for a ficti-
tious examinee in Figure 3.1. As usual, 6 denotes the ability parameter in the IRT
model, for example, the three-parameter logistic (3PL) model in (1) below, and [
is an estimate of the examinee’s value for the ability parameter. The first shadow
test is assembled to be optimal at the initial ability estimate, 0. The first item
administered is the item in the shadow test optimal at 6. After the response to the
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first item, the ability estimate is updated and the second shadow test is assembled
to be optimal at this updated ability estimate, 6, retaining the item that was al-
ready administered. The process is continued until the last free item in the shadow
test, which was selected to be optimal at 6,,, is administered. Observe that if the
CAT were administered from a pool of linear tests, the set of shadow tests in Fig-
ure 3.1 would not be a subset of the tests in the pool. For one thing, the tests in the
pool are disjoint whereas the set of shadow tests shows overlap. More importantly,
the set of shadow tests would be the result of the process of mixing and match-
ing between the individual tests in the item pool by the CAT algorithm discussed
earlier. It is exactly this process that is expected to lead to less violation of the
target for item-exposure rates and/or less loss of accuracy of ability estimation if
the distribution of ability values at which the tests in the pool are optimal reflects
the population of examinees.

The process in Figure 3.1 allows us to make the notion of ”an item pool re-
flecting the population of examinees” more precise. Each shadow tests is optimal
at a series of estimates of approaching the examinees’ true values of 6. The choice
is therefore between the distribution of all #s during the adaptive tests or the dis-
tribution of the true value of 8 in the population of examinees. As a matter of fact,
because the distribution of the actual exposure rates of the items depends on the
former but the accuracy of the ability estimator on the latter, this choice amounts
to one between the relative weight put on item security and the accuracy of the
ability estimator. Our personal choice would be to guarantee item security and
choose the distribution of /0\, if necessary with slight increase in test length to com-
pensate for loss of accuracy in ability estimation. In the examples in this paper, the
consequences of the choice between the two distributions is examined for an item
pool assembled from a previous master pool from the Law School Admissions
Test (LSAT).

3.1.1 Earlier Methods

The method proposed in this paper differs from the methods studied in van der
Linden, Veldkamp and Reese (2000) and Veldkamp and van der Linden (2000).
The major difference is that the methods in these references are methods for item
pool design, whereas the current method is a method for the assembly of an item
pool from a mastery pool. In an item pool design problem, no actual items are
available yet, but an optimal blueprint for an item pool is produced, where a blue-
print is defined as a plan for the distribution of numbers of items over the space
with all possible combinations of the relevant statistical and content attributes
of the items. In van der Linden, Veldkamp and Reese, an integer-programming
method is used to calculate an optimal blueprint for an item pool for a testing pro-
gram with linear forms that minimizes the item-writing costs. In Veldkamp and



31

ltems

Figure 3.1: Graphical representation of item-selection process in CAT with shadow tests
for a fictitious examinee (darker area represents items in shadow tests already adminis-
tered, lighter area items reassembled at new ablity estimate).

van der Linden, an optimal blueprint for a CAT item pool is found by simulating
adaptive test administrations over the design space.

The goal of our current research was to find a method for the assembly of an
optimal CAT pool from a given master pool. Previous literature on this problem
does not seem to exist. However, the problem of a method for assembling systems
of rotating item pools from a mastery pool has been addressed earlier (Ariel, Veld-
kamp & van der Linden, 2004; Stocking & Swanson, 1998). These methods can
be used to find an optimal split of a master item pool into a set of (possibly over-
lapping) smaller pools such that rotating these pools among the examinees would
result in favorable item-exposure rates.

3.2 Item Pool Assembly Method

The method is formulated for the distribution of estimates 9 for the population
of examinees. The distribution is denoted as g(¢). A method for the distribution
g(0) is obtained if € is substituted for 6. The question of how to get an estimate of

g(8) or g(0) will be addressed later.

3.2.1 Method
The method has the following steps:
1. Determining the required item pool size, m. It is assumed that m is a multi-

ple of the length of the adaptive test, n. The item pool is thus assembled to
consist of m/n different linear tests.



32 ASSEMBLING CAT’S POOL AS A SET OF LINEAR TESTS

2. Choosing an ability interval, [0, 0], that is large enough to neglect possible
parts of g(#) not covered by it.

3. Partitioning the interval [6;, 0,,] into a series of m /n adjacent intervals. The
sizes of intervals should be chosen such that each interval contains an equal
portion of g(@) Because we have m /n intervals, each interval should con-
tain a portion of g(#) equal to n/m. The midpoint of the fth is denoted

as fy. This partitioning results in a set of points 6y with a distribution that

~

reflects g(0).

4. Assembling a set of m/n tests from the master pool, one for each point
0f, f = 1,...,F = m/n, using the model for test assembly in the next
section. The model requires each test to meet the content constraints and to
have maximum information at its point 6,. The set of all tests constitutes
the CAT item pool.

3.2.2 Models

In the empirical example below, the 3-parameter IRT model for the items in the
master pool is:

pil0) = Pr(U; = 110) = i + (1 — c){1 + exp[—a; (0 — b)), (.1)

where U; is a binary variable for the response of the examinee to item ¢, § €
(—o0, 00) represent the examinee’s ability level, and a; € [0, 00), b; € (—o0, ),
and ¢; € [0, 1] are the discriminating power, difficulty, and guessing parameter for
item 4, respectively (Birnbaum, 1968).

To present the model for the simultaneous assembly of multiple tests, the fol-
lowing notation is needed. The individual items in the master pool are denoted by
i = 1,..., I and the individual tests to be assembled by f = 1,..., F. The model
is formulated using decision variables x;; which take the value one if item ¢ is
assigned to test f and the value zero otherwise. The model will have constraints
to prevent each item from being assigned to more than one test. As for the con-
tent specifications, constraints for only one set of categorical and one quantitative
attribute are formulated; in a real-life application, more constraints of these types
will be needed to represent the total set of content specifications. Generally, cate-
gorical constraints require tests to meet upper bounds n((;u)and lower bounds ng)on
the numbers of items with content attributes ¢ = 1, ..., C. The sets of items in the
master pool that have these attributes are denoted by V.. Quantitative constraints
require tests to meet upper bounds ng")and lower bounds ngl) on the sums of the
values of the items on a quantitative attribute ¢ (eg, expected response time or

word count). Finally, Fisher’s information in test f at 6 is denoted as 1;(0).
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The general shape of the model is:
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The first set of constraints in (3.3) defines a lower bound y to the information
in each of the tests at the points ¢ 7. The objective function in (3.2) maximizes this
lower bound. As a result, the tests are assembled to approximate a uniform distri-
bution of information over 0, f = 1,..., F, at maximum height. The second set
of constraints in (3.3) defines the length of the tests. The next four sets are needed
to require both the numbers of items with categorical attributes and the sums of
the values of the items on the quantitative attribute to be between upper and lower
bounds. The two last sets of constraints guarantee that items are assigned to one
test at most and the decision variables take only admissible values, respectively.

3.2.3 Solution

A solution to the optimization problem in (3.2)-(3.3) can be calculated using one
of the commercially available software packages for linear programming with an
optimizer for mixed integer problems. The authors’ favorite is CPLEX, of which a
new version with remarkably improved power has been released recently (ILOG,
2002). A solution to the model in (3.2)-(3.3) consists of a set of values for the
decision variables x; and y; the former denote the items that have been assigned
to the tests, the latter is the maximum value possible for the master pool given the
constraints in the model.

It is important that the tests be assembled simultaneously, i.e., in one opti-
mization run. If they are assembled sequentially, each next test would tend to be
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less informative at its  y than the tests assembled earlier at theirs. Due to the nature
of the decision variables, the model in (3.2)-(3.3) does assemble all tests simulta-
neously. The first to model the problem of simultaneous test assembly using this
type of variable was Boekkooi-Timminga (1987).

It should be observed that, for a given master pool, the number of variables z; ¢
increases exponentially in the number of tests to be assembled. If the number gets
too large, it is recommended to run the optimizer until a solution is obtained with
a value for the objective function differing from an upper bound to its optimum
only by a small percentage. A reasonable upper bound can always be found by
relaxing the integer constraints on x;; in the last set of constraints in (3.3), that
is, replacing the domain of these variables by the interval [0,1]. Alternatively, an
implementation of the model with the dummy-test” approach proposed in van
der Linden and Adema (1998) can be used.

3.3 Empirical Study

The goal of the empirical part of this study was to assess the impact of the dis-
tribution of the ability levels 6 on the quality of the adaptive test. In particular,
the difference in impact between sets of tests assembled at a distributions of 6

~

matching ¢(#) and ¢(0) was studied. As a baseline, adaptive testing from an item
pool for a traditional paper-and-pencil program with tests with parallel informa-
tion functions was used. More in particular, the following conditions were present:

Condition 1 A set of tests assembled using the method proposed
in this paper to be optimal at a distribution of 6 ;

~

chosen to reflect g(6);

Condition 2 A set of tests assembled using the method proposed
in this paper to be optimal at a distribution of 6 ;
chosen to reflect g(0);

Condition 3 A set of parallel tests each assembled to have an in-
formation function reflecting g(6).

Each of these pools was evaluated using CAT simulations with and without
item-exposure control. The quality of the CAT administrations was determined
using the bias and mean-squared error (MSE) functions of the ability estimators
and the actual distribution of the item-exposure rates in the pool. It was not nec-
essary to record the number of times the content constraints on the test were met.
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A sufficient condition for all shadow tests to be feasible is to have at least one
feasible combination of items in the pool (van der Linden & Reese, 1998), and
this condition is automatically met for item pools consisting of a set of tests each
assembled to meet the content specifications.

The differences in quality of measurement between the conditions were ex-
pected to be smaller near the middle of the ability distribution than in the tails. As
for the tails, we expected the pools in Condition 1 and 2 to outperform the one
in Condition 3, but hoped for small differences between the pools in Condition 1
and 2. In practice, an estimate of the distribution of ability estimates, (), for a
population of examinees can easily be obtained by running CAT simulations. It
is more difficult, however, to infer a good estimate of the true ability distribution,
g(0), from a set of response data. Small differences between Condition 1 and 2

~

suggest that we can use ¢(#) instead of g(6).

3.3.1 Method

The master item pool was a previous pool from the LSAT with I = 5, 316 items.
This size of pool is huge for the test assembly problem involved in the method in
this paper. However, because the pool was a previous real-life mastery pool, it was
decided to leave it intact. The sum of the information functions of all items in the
pool is depicted in Figure 3.2. As the figure reveals, the pool had a slight tendency
to be on the difficult side for the N (0, 1) population assumed in this study.

The length of the adaptive test was set equal to 50 items, which is half the
length of the current paper-and-pencil version of the LSAT. The bounds in the
right-hand sides of the constraints in (3.3) were reduced proportionally. The paper-
and-pencil version of the LSAT does have an item-set structure with several spec-
ifications for the content of the common stimuli, which was ignored in this study
though. The total number of categorical and quantitative constraints needed to
model the content specifications of the LSAT in (3.3) was 96.

The size of the operational CAT pools to be assembled from the LSAT pool
was set to 500. Given the length of the adaptive test, the pools therefore had to
consist of ten individual tests each. This number of tests involved a version of the
model in (3.2)-(3.3) with 10x5,316 + 1 = 53, 161 variables.

The true ability distribution g(6) was assumed to be N (0, 1). For the first con-
dition, the distribution of g(f) was obtained by simulating CAT administrations
from the master item pool for 10,000 examinees randomly sampled from g(0).
The simulations were based on the shadow-test algorithm described above. The
distributions of g(¢) and ¢(0) are shown in Figure 3.2. As expected, the estimate
of g(0) was less peaked and, consequently, had more mass in its tails.

For the first condition, the interval [6;, 6, ]=[-2.0, 2.0] was partitioned into

~

ten intervals using g(6) according to Step 3 in the description of method above.
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The intervals had midpoints 6 ¢ that were equal to {-1.606, -1.018, -0.656, -0.361,
-0.109, 0.143, 0.404, 0.696, 1.055, 1.627}. For the second condition, the same
method was used to partition the interval [0, 0,,]=[-2.0, 2.0] into ten intervals
using g(¢). These intervals had midpoints §; equal to {-1.593, -0.991, -0.648,
-0.373,-0.122, 0.122, 0.373, 0.648, 0.990, 1.593}.

For the third condition, the pool of parallel tests with the shape of their indi-
vidual test information function matching the shape of g(f) was assembled using
a modified version of the model in (3.2)-(3.3). The modification was the replace-
ment of the first set of constraints in (3.3) by a larger set

1

Yo Li(Ok)zip > gOk)y f=1,....F,k=1,.. K, (3.4)
i=1

where the test information functions were controlled at the values 0y, k = 1, ..., K.
These sets of constraints require the test information function to have a relative
shape determined by the weights g(6)) but maximizes its height. In this study, we
chose to control the test information functions at 8; = —1, 82=0, and 63=1. This
choice was motivated by our ample experience that, as information functions are
smooth, well-behaved functions, control at only a few 6 values is sufficient to get
desired results.

For each of the conditions, the CAT simulations were repeated twice. The
simulations were also based on the shadow-test algorithm. In the first set, 1,000
CAT administrations were simulated for each value § =-2.0, -1.5, ..., 2.0. This
set was used to evaluate the bias and MSE functions of the ability estimator. The
same number of simulations was used at each of the 6 values was to get esti-
mates of these functions with uniform accuracy along the scale. In the second set,
10,000 CAT administrations were simulated with 8 values randomly sampled from
N(0,1). This set was used to evaluate the distributions of the actual exposure rates
of the items in the three pools for the true population in this study.

The ability estimator was the expected a posteriori (EAP) estimator with uni-
form prior over [-4.0, 4.0]. For each simulated examinee, the ability estimator was
initialized at § = 0. In the conditions with item-exposure control, the method with
probabilistic item-ineligibility constraints in van der Linden and Veldkamp (2004)
was used with a target value for the exposure rates set at .25.

3.3.2 Results

For the first two conditions, the assembly of the pools took approximately 83
seconds on a PC with an Intel Pentium II 860 MHz processor with 128 MB of
memory. For the third condition, it turned out to be difficult to reach optimality
in realistic time. The process was therefore stopped when a solution with a value
for the objective function differing no more than 5% from the relaxed solution
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Figure 3.2: Pool information (left), the distribution of ¢(#) and g(6) (right), where dashed
line represents g(6).

was found. This result was reached in approximately three hours. The difference
in solution times between Condition 1-2 and 3 can only be due to the presence of
the additional constraints in (3.4); all other CPLEX settings were identical. Ap-
parently, if a problem reaches this size (over 50,000 variables), the reduction of
the feasible area introduced by (3.4) was too large for CPLEX to handle. It is very
well possible that different settings or a slight reformulation of the model could re-
move this effect. However, as demonstrated by the results in Figure 3.3, a solution
differing less than 5% from optimality works well for all practical purposes.

Figure 3.3 shows the information functions for the 10 tests and for the en-
tire item pools in the three conditions. Each of the individual tests had its peak
approximately at the required 6 value. The only difference is a slight tendency of
the peaks toward the lower end of the scale to be to the right of their required
values. This tendency is believed to be a consequence of the fact that the master
pool was slightly on the difficult side for the N(0,1) ability distribution (see Figure
3.2). Observe that the peaks for the curves for Condition 1 and 2 follow the ability
distribution in the chosen population, whereas those for Condition 3 were all near
the middle of the ability distribution. Also, the peaks for Condition 1, which were
based on g(@) instead of g(f), showed a slightly larger spread. All results were
thus nearly exactly as required.

It is interesting to note that, in spite of the differences between the first three
plots in Figure 3.3, the last plot shows approximately the same shape of the total
information functions for the three pools. It is thus possible that items pools, which
are nearly identical on the surface, at a deeper level have an entirely different
composition. The important difference between the three pools is the distribution
of the individual tests of which they are composed. For Condition 1 and 2, this
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distribution guarantees numbers of items with both maximum information and the
required combination of attributes available at § values in proportion to the density
of the examinees in the population. The pool for Condition 3 lacks this feature.

The quality of the three pools was further assessed using CAT simulations.
The bias, MSE functions, and exposure rates are given in Figure 3.4. Both for
the CAT with and without exposure control, the bias functions for Condition 1
and 2 had never a difference larger than .009 over the full range of 6 values. Both
functions also showed a slight inward trend typical of a Bayesian ability estimator.
The MSE functions for Condition 1 and 2 differed never more than .005. Also,
they were flat for all practical purposes, except for a slight upward trend at the
lower end of the scale, which is believed to be a consequence of the fact that the
master pool was on the difficult side and the lower end of the distributions of the
tests in the pools for these two conditions were influenced by this. The curves for
Condition 3 coincide with those for Condition 1-2 for the # values in the middle
of the scale. In fact, the only meaningful differences are between Condition 1-2
and 3 at the lower and upper ends of the scale, where both the bias and MSE in
Condition 3 became approximately twice as large as in Condition 1-2.

In Figure 3.4, the item-exposure rates for the three pools with and without
exposure control were nearly indistinguishable. For the condition with exposure
control, each item always had an exposure rate below the target value of .25. This
result should not be ascribed to the composition of the item pools, but to the power
of the exposure-control method used, which guarantees effective control of all
items (for details, see van der Linden & Veldkamp, 2004). However, the fact that
these results were obtained introducing only small random variation in the bias or
MSE functions was due to the composition of the pools. As each pool consisted of
a sufficiently large number of items with the required combinations of attributes,
once the exposure-control method had rejected an item for administration to an
examinee, it was always able to find another one with the same combination of
attributes that had its maximum information at a point not too far from the item
rejected. As demonstrated by the less uniform shape of the bias and MSE functions
for Condition 3 in Figure 3.4, the only difference between the item pools was that
for this condition both the rejected item and its substitute tended to be closer to
the center of the ability distribution than desirable.

3.4 Conclusion

Though the method item pool assembly introduced in this paper is based on simple
traditional principle, its impact on the composition of the item pool and, hence, on
the properties of the adaptive test in the empirical study was remarkably positive.
The method succeeded in breaking down effectively the undesirable correlational
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Figure 3.3: Test information curves for Condition 1 (top left), Condition 2 (top right), and
Condition 3 (bottom left), and pool information for each condition (bottom right, where
dashed line represents Condition 3).
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Figure 3.4: Bias, MSE, and item exposure rate for each condition, without exposure con-
trol (left) and with exposure control (right), where solid line represents Condition 1,
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structure between the points of maximum information and the content attributes of
the items typically found in operational CAT pools. As a result, the CAT algorithm
was never hampered by any lack of items with required combinations of attributes
along the 6 scale and able to move more freely from the location of the initial
item to true ability level of the examinee. The nearly uniform MSE functions in
Figure 3.4 witness this effect. A second result is that the item-exposure control
mechanism had no difficulty replacing items rejected for an examinee with items
of comparable statistical quality. The fact that, except for small random variation,
the curves in Figure 3.4 have the same shape for the conditions with and without
exposure control identical witnesses this second result.

In the empirical example we hardly found any differences between the pools
for Condition 1 and 2 assembled for an application of the method with 9(5) and
g(0), respectively. This result suggests that in practical applications there is no
need to estimate g(0); instead we can use the much easier to estimate distribution
9(0).

Finally, in a sense, the method proposed in this paper might only seem to
have shifted the problem of item pool design from the operational pool to the
master pool. In our empirical study, the master pool did not impose any severe
constraint on the assembly of the operational pools. This does not necessarily
hold for real-life situations with less-well managed master pools. However, we do
not recommend using our method for solving problems with the composition of
master pools. Such an application would involve the imposition of the constraints
in (3.2)-(3.3) derived from the content specifications for the adaptive test on the
master pool. Rather, we believe these constraints should be imposed directly on
where they belong, namely the algorithms or the pool of authors used to generate
the items.
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4
Optimal Testlet Pool Assembly

Abstract

Computerized multistage testing (MST) designs require sets of test questions (test-
lets) to be assembled to meet strict, often competing criteria. Rules that govern
testlet assembly may dictate the number of questions on a particular subject, or
may describe desirable statistical properties for the test, such as measurement pre-
cision in the range of the passing score. In a multistage testing (MST) design,
testlets of differing difficulty levels must be created. Statistical properties for as-
sembly of the testlets can be expressed using item response theory (IRT) properties
of questions. The testlet test information function (TIF) value can be maximized
at a specific point on the IRT ability scale. In practical MST designs, parallel ver-
sions of testlet are needed, so sets of testlets with equivalent properties are built
according to specifications for that testlet. In this project, we study the use of a
mathematical programming solution to simultaneously assemble testlets to ensure
equivalence and fairness to candidates who may be administered different testlets,
and to ensure the best use of the available item pool.

Key words: Mathematical programming, multistage testing, security, testlet, test-
let assembly problem.

This paper has been submitted for publication.
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4.1 Introduction

Operational computer-based testing (CBT) programs normally require a large avail-
able item pool. To provide uniform tests continually, items in the pool should also
have stable psychometric and categorical/quantitative attributes. This might be
costly; writing, banking and pretesting new items requires resources and quality
is variable. In addition, an existing item pool can be expected to change at various
times during a testing program (Way and Steffen, 1998).

One solution to quality control is to manage the use of items in the pool by
assembling testlets or ”bundles of items” (Wainer and Kiely, 1987). In a testlet,
items are not used individually. Instead, items are assembled and administered
in clusters. The testlet approach combines some advantages of paper and pencil
tests (e.g., the opportunity to build to content specifications and control item us-
age) with some advantages of computerized adaptive testing (CAT). An additional
benefit of testlet assembly is the possibility of predicting and managing the secu-
rity of test content. Monitoring of exposure can be accomplished at the assembly
stage, in addition to tracking the administration history of content over time.

There have been a variety of models that use testlets, for example multistage
testing (MST) (Lord, 1980) and computer-adaptive sequential testing (CAST)
(Luecht, Brumfield, and Breithaupt, 2002; Luecht and Nungester, 1998). MST
models assign a group of testlets to form a panel where the content difficulty
selected for the examinee depends on performance during administration (adapta-
tion). A thorough discussion over MST design, routing decision, and final score
calculation is beyond the scope of this paper. In this study we use Figure 4.1
merely as an illustration and in the next paragraph we described only a general rule
in MST. In Figure 4.1, a panel design consists of three stages and seven testlets.
The difficulty levels of testlets in this example are classified as moderate, aver-
age, and difficult. Lines connecting the testlets in Figure 4.1 represent the possible
pathways an examinee may take. In this panel, there are seven possible paths.

Only one testlet per stage is seen by each examinee. Every examinee who is
administered any panel will start at Stage 1 where the testlet consists of items with
average difficulty. At the next stage, depending on their responses toward items in
the previous testlet, the examinees are routed to take either a moderate, an average,
or a difficult testlet at Stage 2. A subsequent routing decision is repeated to select
a testlet at Stage 3. Notice that only content difficulty vary among the paths; all
possible paths should lead to identical test content.

Particularly for a testing program with a large volume of candidates every
year, much more panels are required to support continuous testing and to mini-
mize content exposure. Direct implication of such policy is that a large number of
testlets has to be assembled (Luecht, 2000). The focus of this paper is on how to
transform a discrete-item pool into a testlet pool. It is important to build this testlet
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Figure 4.1: An example of a multistage testing (MST) design

pool by assembling testlets simultaneously. To construct testlets sequentially, or
one by one, would be an easily programmed solution. However, a separate assem-
bly approach would lead to a deterioration in the quality of the testlets formed later
in the test assembly problem, compared to those assembled first. This is because
fewer test questions (items) remain in the pool, and usually items with desirable
properties are chosen early. Building testlets simultaneously will guarantee that
items are equally distributed with respect to their psychometric attributes, thus
the resulting test forms are expected to have uniform quality. Another important
factor to consider is a balance of content as specified in the test blueprint. This bal-
ance of content must be assured for every path seen by candidates. One solution
is to demand every testlet to meet both psychometrical and test requirements, and
to enforce every testlet to be parallel in content. These concerns, and others, are
represented as key principles in the design of testlets model. Discussion of these
principles follows in the next section.

4.2 Principles of Constructing Testlets

The mandate of most testing programs relies on ensuring that candidate scores
represent a measure across the content domains specified by the test blueprint.
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Ensuring that any possible path through the MST will provide required content
coverage equal for all candidates is essential. How to build the testlets with regard
to their difficulty level is important as well. As indicated earlier, automated testlet
assembly should be designed to produce parallel panels. In this section, we de-
scribe how these key considerations were operationalized using an optimization
programming approach.

4.2.1 Content Constraints

Content and other constraints are incorporated into the testlet assembly process
to be certain that the examinee experience is uniform. For example, the number
of test questions, the bounds on the number of items with certain item types, the
number of words, or the number of times any item has been used in previous
testing events may be considered as content constraints when testlets are built.
In our study, these constraints have to be applied at the testlet level so that once
testlets appear together in a panel every possible path is balanced for content.
The content balancing process can become laborious and is sometimes impractical
when the testing program offers an MST with different content at each stage.
Standardizing content at the testlet level also allows us to easily build parallel
versions of routes and panels.

4.2.2 Difficulty Levels

In MST, items are selected into a testlet with respect to a specified range on the
ability scale (moderate, average and difficult are the ranges in our study). The
relationship between the ability level of candidates and the difficulty profile of
items or testlets is strictly defined by IRT models (Hambleton, Swaminathan &
Jones, 1991). Difficulty of testlets is implicit in the assembly process when a test
information function (TIF) is used to identify items assigned to testlets.

The choice of appropriate theta values guides selection of items for a desired
TIF, or difficulty range for any testlet. Meanwhile, the choice of targets will have
implications for content exposure and precision of test scores (Luecht & Burgin,
2003). If possible, statistical targets for optimizing the TIFs would be selected to
equalize exposure of all testlets in the build.

Formal approaches to the selection of TIF targets are not readily available
from the existing literature. This is not surprising since the MST approach to test
design in operational programs is a relatively recent development. In general, the
choice of TIF targets depends on the specific objective of the testing program. For
example, in the framework of licensure exams, some principled strategies to de-
termine appropriate theta values have been proposed by Luecht (2000) and Luecht
& Burgin (2003). According to Luecht and Burgin, the choice for the TIF should
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reflect three goals: precise measurement for critical decisions, appropriate infor-
mation value with respect to the available item in the pool, and balance of the item
(testlet) exposure rates. Obviously, the exposure of testlets depends on the choice
of a cut-score for routing to moderate, average, or difficult testlets at subsequent
stages, and the distribution of ability in the population. These issues are outside
the scope of this paper, and to maintain generality we will use theta values range
between -1 and 1.

4.2.3 Testlet Parallelism

A general procedure to construct tests based on item information is suggested by
Birnbaum (1968). In that procedure, single items are selected from a calibrated
item bank to fill the desired shape of TIF. This information function is inversely
related to the asymptotic score variance; hence it is possible to control measure-
ment error along the ability scale. Luecht and Nungester (1998) explicitly mention
the use of target information to effectively control the measurement precision.

As previously explained, it is important to construct the largest possible testlet
pool while maintaining parallelism and high quality throughout (Luecht, Brum-
field, and Breithaupt, 2002). Paralellism, or statistical equivalency in this case can
be defined by the IRT properties of the testlet questions and by content required
by the test blueprint.

4.3 Simultaneous Assembly of Testlets

4.3.1 Model

In this study, a general model for the assembly process defined by van der Linden
and Boekkooi-Timminga (1989) was adapted. In their assembly model, parallel
tests are built by maximizing the lower bound of the testlet information at the
specific target ability point (maximin approach). This lower bound value is called
a relative target and is represented as y. It is possible to adjust the relative target
(in this case testlet information) of different testlets by using weights to make
the best possible use of the item pool (van der Linden, 2003). For instance, some
item difficulty level might overlap for testlets of high difficulty and of moderate
difficulty level as they share some theta value. In this sense, the IRT characteristics
of items would be similar, and items would be eligible for moderate or difficult
testlets. If no item-overlap is allowed among testlets, a higher weight can be given
to the information target used to construct testlets of higher priority, say, difficult
testlets.

In some case, it may be desirable to emphasize moderate testlet targets to en-
sure even use of the item bank across the ability scale, and as a consequence ensure
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useful feedback for candidates whose ability is low. Weights on the TIFs of testlets
of different difficulties can be adjusted to meet these goals, when optimization and
simultaneous assembly are used.

The linear programming solution for the assembly problem will also include
many other constraints, for example item enemies (i.e. certain items are not al-
lowed to appear on the same test if they cue other items or are close variations of
a single item). There may also be rules for forced inclusion of items on key topics,
or limits on the number of items related to similar content.

The complete rules that govern the model are summarized as follows. The
model seeks to:

Maximize y 4.1

subject to the following constraints:
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In Constraints 4.2 relative information is measured at & ability values using a
nonzero weight, w. Total number of items for each testlet is fixed in Constraints
4.3 while bounds on the number of items with respect to certain categorical at-
tributes are specified in Constraints 4.4. The inclusion of critical content and the
exclusion of items (item enemy) are addressed in Constraints 4.5 and Constraints
4.6, respectively. In this assembly, no item is shared among testlets (Constraints
4.7). The last two constraints define the binary decision variables to select items
and a positive real number as a lower bound for the testlet information.
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4.3.2 Testlet Assembly Algorithm

It is essential to assemble the testlets simultaneously, to prevent unequal use of
good quality items across testlets. However, assembling parallel testlets simulta-
neously is a challenging numerical aspect of binary programming. The complex-
ity is due to the presence of binary variables; the number of variables is enor-
mously increased as a multiplication between the intended number of test forms
and the number of available items in the pool. The problem of assembling pa-
rallel testlets is similar to the one of creating parallel linear tests. The latter has
been addressed by several authors. Adema (1992) proposed combining heuristic
and optimal methods, Boekkooi-Timminga (1990) suggested selecting tests si-
multaneously from comparable subpools of items, and van der Linden and Adema
(1998) offered the dummy test approach to reduce computational difficulty while
obtaining parallel solutions for all test forms.

Heuristic techniques are popular alternative methods used to approximate op-
timal solutions in a relatively small amount of time. Nevertheless, the quality of
solutions resulting from heuristic methods cannot be guaranteed and constraint vi-
olations may occur (Swanson & Stocking, 1993). From this point of view, heuris-
tic methods are not sufficient or appropriate when it is essential to build precisely
parallel testlets that are optimal and meet exactly all problem constraints.

Exact methods guarantee that solutions will be optimal, given that a feasible
solution exists for the data. A feasible solution can be defined as a set of testlets
where all content rules and other assembly rules are met. One example of an exact
method is a network-flow approach. Wu (2001) demonstrated this method that can
be applied to solve the problem of assembling parallel tests simultaneously. How-
ever, to accommodate complex constraints such as relative test information and
weights on content required, the network-flow should be combined with heuristic
approach. One example is from the work of Armstrong, Jones and Kunce (1998)
where Lagrange relaxation is integrated into their network-flow model.

The assembly solution in this study makes use of another exact method known
as mixed integer programming (MIP). In the statement of the problem, binary vari-
ables are employed to indicate whether or not a given item will be included in a
particular testlet. The MIP model contains linear constraints that must be resolved.
To find solution for MIP problems, a branch and bound algorithm (Dakin, 1965;
Garfinkel & Nembhauser, 1972) is widely used. The efficiency of this algorithm is
determined primarily by the formulation of the problem, the size of the problem,
and the data structure. Much time (and computer resources) might be required in
searching for feasible and optimal integer solutions. An analysis can be prolonged
when it is possible such a solution does not exist based for a given data set (coded
item pool). Some modifications to the MIP analysis can speed up the algorithm.
However, the appropriateness of these modifications depends entirely on the spe-
cific problem. A thorough investigation and some useful suggestions concerning
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MIP problems and the branch and bound algorithm framed in the test assembly
vernacular are available from Veldkamp (2001).

The above model can be solved using commercial modeling language for
mathematical programming such as AIMMS (Paragon Decision Technology, 2003)
or OPL Studio(© 3.1 (ILOG, 2003), both of these use branch and bound algo-
rithms provided by CPLEX 8.1 (ILOG, 2003) to generate a solution. Both AIMMS
and OPL Studio(c) have a variety of algorithms available. The test developer can
choose settings that influence the solution strategy, with some effect on processing
time and the optimality of the solution.

4.3.3 Continuous Testing Programs

Testlet assembly solutions, especially for high stakes continuous testing program,
must create solutions that consider the quality of future assemblies into account.
If the pool used to build the testlets will change over time (e.g., by adding new
items), the task of producing equally high quality and parallel test forms over time
is challenging. A common response toward this problem is to divide the master
pool into smaller-sized, parallel pools and use only a subpool for any particular
assembly. Literature concerning the use of splitting a master pool into subpools is
available from a variety of computerized testing authors (e.g., Mills & Stocking,
1996; Way, Steffen, & Anderson, 1998), while the methods for splitting the item
pool are addressed in, for example, Ariel, Veldkamp and van der Linden (2004),
and Stocking and Swanson (1998).

The subpool approach could lead to fewer testlets or even infeasibility if the
master pool has an inadequate number of items in some content areas, or otherwise
uneven item composition. One approach to this problem, illustrated in our study, is
to create a maximum possible number of testlets from a given item pool. Once the
capacity of the master pool is known, conservative selection of testlets over time
forms the subpools of interest. Such approach allows for uniform testlets across
multiple testing periods by allocating some testlets for the present administration,
and reserving others for future builds. This idea is very similar to the dummy test
approach proposed by van der Linden and Adema (1998).

4.4 Empirical Example

This section illustrates the implementation of the principle we have discussed. A
subset of multiple-choice questions (MCQ) from the master pool of an operational
high-stakes testing program forms the basis of our study.

In our examples, the pool consists of 1,066 coded MCQ items that were cal-
ibrated using the 3PL IRT model. The general shape of item information curve
in this pool is illustrated in Figure 4.2. Complete coding of the items involved
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discrete coding for content, skill, and enemy conditions. Enemies are defined as
items with minor variations in wording, or items that provide a cue for the correct
answer of other items. We use the bounds on content and other rules for test re-
quirements that have already been specified by test developers. In order to benefit
from a standardized testlet format, every testlet in the same stage is bound to the
same requirements.

At the second and third stages in this MST design, testlets will differ in dif-
ficulty level. In practice, the choice of ability points (difficulty) where one would
maximize testlet information is made with consideration of a variety of factors.
These factors include routing rules and expected testlet exposure rates (Luecht
& Burgin, 2003). In our study, we chose ability values ranging from -1 to 1 to
identify where on the theta scale information for a testlet will be optimized.

Specifically, three sets of theta values were used to locate the midpoints and
left or right targets for maximum information. In our study, for all stages, testlet
of average difficulty has target at § = 0. The second and third stages have testlets
of moderate difficulty with a midpoint at # = —1,0, 1 and difficult testlets with a
midpoint at & = 1. One reason for using overlap theta values among testlets was
to enable good coverage of content difficulty for candidates lower on the ability
scale who may need to use feedback scores to prepare to re-take the examination.
At the same time, the precision of the total test score at the passing point is tightly
controlled. It is possible to meet both objectives by using different weights for
testlet targets to distinguish the amount of information required along the ability
scale.

To accommodate various theta values in combination with different weight,
Constraints 4.2 were appropriately extended as follows (van der Linden, 2003).

I
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In our case study, we examined the benefit of using weights and impact on
testlet information. The above model, therefore, is implemented under two condi-
tions, namely:

Condition 1 The same weights are applied for all testlets, i.e., all
testlets will be maximized using the same w; value (w; = 1)

Condition 2  Different weights are used, i.e., a higher weight is given
given to difficult testlets (w; = 1.5) while the other
testlets will have lower weight (w; = 1).

In the first condition, we expect to see the original composition of the testlets
information from the given pool. Observe that, as illustrated in Figure 4.2, the
difficulty level of the available items tends to be higher than 0. The effect of such
composition is that difficult testlets might have lower information as items of high
difficulty have to be fairly distributed among testlets (the effect would be stronger
as the testlets share similar theta value). In the second condition, higher priority
is given to difficult testlets through the use of higher weight. In this case, it is
expected to obtain higher testlet information for difficult testlets.

As described earlier, the maximum number of testlets that can be produced
from the item pool is determined by the combination of constraints and the item
pool. Constraints refer to the item enemy rules, the content bounds, and other con-
ditions related to key content. It might be important to note that the target weights
used will have no effect on the number of testlets that can be built. Therefore,
a rough estimate of the upper limit on the number of testlets can be conjectured
based on item availability and bounds on testlet constraints.

The maximum number of feasible testlets from this pool can be represented
as M az. The actual maximum number of testlets that are produced, M, is deter-
mined by the composition of the item bank and rules for items or enemy-sets. Our
objective was to find M. We investigated the number of testlets possible by solv-
ing the model for m = 1...Max. Once infeasibility occurred, M ax was lowered
by one and the process is repeated until we reach a feasible solution. In that case
we conclude that M = Max.

4.4.1 Results

The testlet assembly models were solved using AIMMS with CPLEX 8.1 as the
solver. An integer feasible solution was found, on average, in 40 minutes on a
fairly common desktop computer. Improvements on the initial solution required
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Figure 4.2: Item pool information (top) and testlet information for Condition 1 (middle)
and Condition 2 (bottom)
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more time, and depended primary on the content constraints required by the test
developer. We terminated the program when the difference between the relaxed
objective value and the obtained integer value was below 8% (this is a setting in
the CPLEX routine termed the tolerance gap). This decision was based on a review
of results for a similar assembly problem (van der Linden, Ariel, & Veldkamp, in
press), where the gap criterion was in the same range (about 5%).

The maximum number of testlets (each having 25 items) from our pool of
1066 MCQs that we assembled initially was 35 testlets. These testlets used about
82% of the available items. It is possible to increase the number of feasible testlets
into 42 (or assign about 98% of the items in the pool), if we relax the bounds on
some content constraints (where items were scarce).

Recall, in one solution we wished to see the impact of different weighting for
testlet targets. We used the same weights for all testlets, in one condition. In the
second condition we applied a higher weight for difficult testlets to increase their
total amount of IRT test information. These two formulations of the weights can
be seen when the TIFs for testlets are compared (Figure 4.2).

Figure 4.2 (middle) illustrates weight w = 1 at the midpoint of the ability
targets for all testlets. Figure 4.2 (bottom) depicts testlets with weight w = 1
for average and moderate, and weight w = 1.5 for high difficulty testlets. Our
optimized solutions both meet required content constraints in the test blueprint.

Observe that every testlet of a given difficulty level in Figure 4.2 is closely
parallel to others of the same difficulty in statistical characteristics. The TIFs are
overlapping. One interesting finding is exemplified when we note the testlets do
not always reach their highest information values at the target theta values used to
build the testlets (e.g., see the moderate testlets in Figure 4.2). This outcome is a
result of our model expression where relative target information is specified as the
objective function.

In a MIP solution where relative targets are defined, the resulting testlet TIF
shape depends, to a great extent, on item pool information. As shown in Figure 4.2
(top), item pool information peaks around 0.3. When the model has to optimize
testlet information at several ability points, as in our case, the algorithm has to
distribute the available items equally well to meet all testlet targets, given the
available pool.

The results also suggest that weight usage is an effective means to acquire
the desired amount of information for particular testlets. As shown in Figure 4.2,
the use of a higher weight for high difficulty testlets increased their information.
Of course, increasing the information for particular testlets would automatically
reduce information for other testlets. Particularly when ability points are shared,
the use of weights had the effect of shifting the position of the curves. This was
logical because the algorithm has to supply the testlet of higher weight with more
informative items, and while the ability points are shared and the lower bound
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on information has to be maximized, the algorithm will choose alternative items
whose information values are lower at these ability points. The consequence of
taking these ’alternative items’ is that some curves for the (lower weight) testlets
peaked at a different theta.

4.5 Discussion

This paper addresses one of the essential areas of any application of computer-
ized MST design, namely the testlets assembly problem. The empirical example
illustrates a mathematical programming model approach to practical operational
concerns for large scale testing programs. Results can be generalized beyond the
computerized MST design, and applied to a variety of psychometric models, in-
cluding linear administration.

The approach was successful, in the sense that we used an example pool of
items and created testlets that exactly met content and other rules for assembly.
This mathematical programming technique is a straightforward treatment for the
complex and representative problem, where competing constraints exist on testlets
assembly.

An important feature of our case study solution is the analysis of maximum
testlet construction from the pool. This approach has value as it can be applied
prior to an individual assembly to protect test quality over time. This is a benefit
of simultaneous assembly that can be used to reserve feasible solutions for later
administrations. This feature will be important whenever uniform quality among
testlets or tests is required for continuous administrations.

The general approach illustrated here offers a practical solution to a common
testing program problem. Similar test assembly problems can be solved in a rea-
sonable time, on common computer equipment using publicly available software
to generate solutions using MIP algorithms. Individual settings can be tailored
by the test developer for their program objectives and psychometric model. For
example, size of build, length of tests, range and weights for targeted difficulty
can be customized to best use available test content, while adhering to principles
of parallelism and meeting the mandate of a testing program. This study offers
some techniques to obtain testlets for MST, in the presence of practical inventory
restrictions and constraint rules where test decisions depend on valid test scores.
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D
Strategy for Managing Item Pools

Abstract

Item-pool management requires a balancing act between the input of new items
into the pool and the use of items in tests assembled from the pool. A strategy
for optimizing item-pool management is presented in which the notion of main-
taining an optimal blueprint for the item pool is used to tune item production to
test assembly. A simulation study for a previous item pool from the Law School
Admission Test (LSAT) was used to evaluate the improvement of test assembly
over time due to the use of this strategy.

Key words: Item-pool design, item-pool management, optimal design, test assem-
bly.
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5.1 Introduction

An item pool is a collection of test items for a given domain usually stored in
computer memory along with a list of codes for their attributes. All item attributes
can be classified into three different categories, namely categorical attributes (e.g.,
item content, cognitive level, and item format), quantitative attributes (e.g., word
counts, exposure rates, and item-parameter values), and logical attributes (e.g.,
relations of exclusion or inclusion in subsets of items) (van der Linden, 2005,
chap. 2).

Although item pools are typically calibrated using an item-response theory
(IRT) model, for example, the three-parameter logistic (3PL) model (Hambleton,
Swaminathan, & Rogers, 1991), their quality depends only partially on the distrib-
ution of the item parameters. Key to the performance of a test-assembly algorithm
is the match between the composition of the pool and the complete list of specifi-
cations for the tests assembled from it.

For example, in spite of their quality, highly discriminating items are not cho-
sen if their content attributes are not the ones required by the test specifications.
In an extreme case, if the pool misses one item with a specific combination of
content attributes, it can even become impossible to select a valid test from the
pool at all. Also, items in the pool with relatively scarce combinations of content
attributes are easily overused. The latter problem creates potential item-security
risk in computerized adaptive testing (CAT) and leads to the necessity of an adap-
tation of the item-selection algorithm to prevent items from being overexposed
(e.g., Ariel, van der Linden & Veldkamp, 2004; Boyd, Dodd, & Fitzpatrick, 2002;
McBride, Wetzel & Hetter, 1997; Revuelta & Ponsoda, 1998; Stocking & Lewis,
1998; Sympson & Hetter, 1985; van der Linden & Veldkamp, 2004).

Suppose that an item pool is optimal for a testing program. If items from the
pool have been used for test production, ideally they are replaced by new items
with the same statistical and content attributes. Otherwise, the pool may get de-
pleted of sufficiently good items after some time. The strategy for item-pool man-
agement studied in this paper is based on this simple principle. In practice, how-
ever, a testing program seldom begins with an optimal item pool. The reason often
is restrictions on the resources of the testing organization which forces it to begin
test assembly while the pool has not yet been completed. Under such conditions, it
is difficult to implement the principle. We will show how item-pool management
can nevertheless be optimized with respect to it. Our basic idea is not to begin
with an actual item pool but with a design of it in the form of an optimal blueprint.
The blueprint is periodically updated allowing for the attributes of the new items
that were added to the pool during the last planning period as well as the attributes
of the items that were used in tests assembled from it. The updated blueprints are
used to govern the production of the items needed to complete the pool. Each step



59

in this process is optimized using integer programming (IP) modeling. The notion
of a blueprint for an item pool will be made more precise below.

In a testing program with paper-and-pencil tests of a linear format, the tests are
frequently assembled from a master pool (Way, Steffen, & Anderson, 1998). For
a program with adaptive tests, the tests are usually not administered from a master
pool but from an operational pool assembled from it (Veldkamp & van der Linden,
2000). Recently, it has been proposed to assemble this operational pool also as a
set of linear tests (van der Linden, Ariel, & Veldkamp, 2005), but even then the
adaptive test is administered from an operational pool and not directly from a
master pool. The same practice occurs in linear on-the-fly testing and multistage
testing, where a pool of exchangeable linear tests or subtests has to be maintained
to guarantee uniform quality of testing for all examinees.

In the current paper, the focus is on the management of a pool for a program
with linear tests assembled from the master pool. This includes the cases of a
program with linear paper-and-pencil tests as well as adaptive, linear on-the-fly,
or multistage testing from a pool of linear tests or subtests. Fluctuations in the
quality of the master pool immediately translate into fluctuations in the quality
of the sets of (sub)tests assembled from it. Optimizing item-pool management to
guarantee uniform high quality of testing over time for these types of testing seems
therefore important.

In the next two sections, we first explain the notions of item-pool design
and an item-pool blueprint and then discuss a strategy for item-pool management
based on the latter. In the last two sections, we present a simulation study with this
strategy and discuss the results.

5.2 Designing the Item Pool

Our method of item-pool design is basically a nonstatistical extension of optimal
design methods as they have been develop in statistics (e.g., Silvey, 1980) and
used, for example, to optimize item calibration and ability estimation problems in
IRT (e.g., Berger, 1997; van der Linden, 1994). A key notion in optimal design
theory is that of a design space. For instance, if the problem is to design an ex-
periment for estimating the parameters in a linear regression equation, the design
space for this experiment is the set of possible values for the predictor variables.
Typically, the full space is not considered but a subset of points that covers the
space in sufficient detail. The design of the experiment is the distribution of the
observational units over these design points. A design is optimal if the distribution
maximizes the accuracy of the estimators of the parameters.

van der Linden, Veldkamp and Reese (2000) suggested to approach the prob-
lem of item-pool design from an optimal-design perspective. The design space in
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this approach is the Cartesian product of all (categorical and quantitative) item at-
tributes addressed in the specifications of the tests that the item pool has to serve.
The objective function that is optimized is not the accuracy of certain statistical
parameters but a function that represents the costs of writing the items.

More specifically, suppose the item pool has to serve a program with parallel
versions of a set of different tests ¢t = 1, ..., T, The tests are from the same pool
but differ in some of their specifications (e.g., an easier and a more difficult test
or a system of 1" short tests for use in multistage testing). We use n; to denote the
number of parallel versions needed for test ¢. This description of a testing program
is general. If the program has only one type of test, we set 7' = 1. Likewise, if
only one version of test ¢ is needed, we set ny; = 1.

Let D denote the design space for this item pool. The space is defined as the
Cartesian product of the categorical and quantitative item attributes used in the
specifications for the set of T tests. The individual points in D are denoted as
d = 1, ..., D. Each point represents a possible combination of the attributes that
an item can have,

d=(attribute 1, attribute 2,...).

An example of a design point is (magnetism, four-choice item, presence of a
graph, calculus required, 120 words, b; = .50, a; = 1.00). We will use the term
item blueprint to denote a combination of attributes at a given design point. Item
blueprints can be used to govern the item-writing process. They give item writers
more specific instructions than the usual taxonomy, list of learning objectives, or
description of a content domain. We expect item writers to be able to write items
with the categorical attributes in the blueprint and with such quantitative attributes
as word counts. But they will generally have difficulty producing items with pre-
specified IRT parameter values. We will return to this point later.

Let x4 denote the number of items in the pool at design point d needed to
assemble test ¢. How these numbers can be calculated is addressed in the next
section. The total number of items needed in the pool at design point d for the
planning period is

T
Ng=) nizg. (5.1)
t=1
The total number of items needed (that is, the size of the item pool) is

I=) N (5.2)

We will refer to the array of numbers

(N17"'7ND) (53)
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as the design of the item pool. Alternatively, since (5.3) can be viewed as the
collection of item blueprints for the pool, we will also refer to it as an item-pool
blueprint.

The choice of a finite set of points implies a discretization of the quantitative
item attributes. This is not a problem as long as we choose a set of values that is
typical of the range of the attribute. In fact, the reduction is the same as in IRT-
based test assembly when we control a test information function over the range of
0 for a population of students at a set of discrete values 0, k = 1, ..., K, where
K typically is chosen to be in the range 3—5. Also, we do not need to address such
logical item attributes as relations of exclusion between items ("enemy items").
Constraints on these attributes have to be imposed only when the tests are actually
assembled. For these and other issues in item-pool design, see van der Linden
(2005, chap. 10).

5.2.1 Design Model

The basic numbers x4, can be calculated using integer programming (IP). In the IP
model, x4 are the integer decision variables that tell us how many items we need
with the attributes at pointd = 1, ..., D fortestt = 1, ..., T". The variables are used
to formulate the sets of specification for the T tests as constraints in the model. As
objective function, we use a cost function function based on the cost ¢ of writing
an item with the set of attributes associated with design pointd = 1,...,D. A
suggestion for a cost function is discussed later in this paper.

Our example of a design model is for a program with [RT-based test assembly.
Let I4(0%), k = 1, ..., K be the information at ability level 8}, in the response to an
item at design point d. This quantity can be calculated from the values of the IRT
parameters in the definition of point d. (If the 3PL model is used, we can adopt a
common value for ¢;, for example, an empirical average and ignore this parameters
in our definition of D.) Suppose the tests £ = 1,...,T" should have information
functions that satisfy absolute target values Ty at 0y, k = 1, ..., K, for test t. To
show an example of a model with constraints on categorical attributes, we use
sets V., c=1,...,C, to denote the partition of the design space by the attribute, for
example, a content classification (that is, if d € V., then d represents a potential
item for content category c). Finally, let g4 be the value of an arbitrary quantitative
attribute ¢ for an item at design point d.

A general version of the design model for a program with 7" tests is:

T D

minimize Y > g xq (total costs) (5.4)
t=1d=1

subject to

D
S Ii(O)xg > Ty, k=1, . K, t=1,..,T (5.5)
d=1
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D
S ag=1l, t=1,..,T (5.6)
d=1
dezv Tdt < nér;ax’ t= ]_, ...,T, Cc= ,...,C (57)
dg/ Tdt > ’rlICItlin, t= ]., ...,T, C = 1,...,0 (58)
D
> qaza < U, t=1,..,T (5.9)
d=1
D .
qazar > b, t=1,..,T (5.10)
d=1
zg €{0,1,...}, d=1,...D, t=1,..,T. (5.11)

The constraints in (5.5) require the test information functions to satisfy the target
values 7;,. The constraints in (5.6) specify the lengths of the tests. In (5.7) and
(5.8), the numbers of items with categorical attribute ¢ are constrained by lower
bounds n™" and upper bounds n™*. Likewise, (5.9) and (5.10) impose lower
bound bgﬁn and upper bounds 0;*** on the quantitative attributes of the tests. We
need to include as many constraints of the types in (5.7)—(5.10) as we have bounds
on the categorical and quantitative attributes in the set of test specifications for the
tests. The final set of constraints defines the decision variables as integer.

If the tests should be assembled to relative target values Ry, we can maximize
the height of the test information function subject to the shape defined Ry (for
the notions of relative and absolute targets for information functions, see van der
Linden, 2005, sect. 5.1.1). This is realized if (5.4) and (5.5) are replaced by

T D
maximize wy — (1 — w) Z Z OaTat (5.12)
t=1 d=1
subject to
D
Z Id(ek){lfdt >Ry k=1,...,.K, t=1,..,T (5.13)
d=1

where y is a nonnegative (real-valued) variable and 0 < w < 1 is a weight for the
relative importance of the objectives of minimal item-writing costs and maximal
test information. Variable y serves as a common factor in the lower bounds to the
test information in (5.13) that is maximized in the objective function.

A solution to a design model is a set of values for the variables x4 that meets
all constraints and involves minimal costs. The values can be used to calculate
the optimal blueprint for the item pool in (5.3). Solutions can easily be calculated
using a general IP solver, for instance, the solver in CPLEX 9.0 (ILOG, 2004).
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5.2.2 Cost Function

If direct estimates of writing the items for the combinations of attributes at the
design points are available, they should be used in the objective function. Alterna-
tively, we could use subjective estimates of these costs or an empirical estimate of
a proxy variable.

A useful proxy to direct costs was recommended in van der Linden, Veldkamp
and Reese (2000). Their class of functions was estimated from a previous item
pool for the same testing program. Let ,; be the number of items in the previous
pool at design point d. The proposed class of functions was

1
vq=1r <"7d n 5) , (5.14)

with f(.) a monotonically increasing function and § an arbitrary small constant
needed to prevent infinite values at points with , = 0. Since f(.) is monotone
and the function is used in an optimization problem, any choice of function in this
class leads to the same result.

The direct assumption on which this proxy is based is that items written more
frequently in the past are easier to produce and therefore involve less costs. But
the choice of (5.14) also has a hidden advantage: It allows us to capitalize on the
empirical dependencies between the item attributes in the program, in particular
on the dependencies between the IRT parameters and all nonstatistical attributes.
As already observed, we expect item writers to be able to produce items with
all attributes in the blueprints, except the values of the IRT parameters. Although
item writers know how to tell a difficult from an easy item, it is typically hard for
them to predict their exact difficulty. This observation holds more strongly for the
discrimination parameter. Minimization of the function in (5.14) means preference
of the items with combinations of IRT parameter values and the other attributes
that occurred more frequently in the past and apparently are easier to write. This
strategy may become more effective if the program has fixed item writers and we
use these item writers as an attribute in our definition of D. We then capitalize
on the specific practice of the individual item writers (van der Linden, 2005, sect.
10.7.2)

If the size of the previous pool is relatively small, the cost estimates in (5.14)
are instable and it is recommended to smooth the estimates over the quantitative
attributes in the design space. A useful smoothing method is k-nearest neighbor
regression, which replaces the estimate at point d in (5.14) by the average found in
a small neighborhood of d. This method was used in the empirical example below.
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5.3 Managing the Item Pool

When item pools are developed dynamically, with items added to the pool and
taken from it to assemble tests continuously, the blueprint in (5.3) should be used
as a tool for monitoring and permanent optimization of this developmental process
of an item pool rather than in a one-shot approach. In this approach, at appropriate
points of time, we compare the actual composition of the item pool with the op-
timal blueprint and use the comparison to calculate a projection of the additional
numbers of items needed at the design points.
The updates consists of the following steps:

1. Establishing the sets of parallel versions of the tests to be assembled in the
next planning period;

2. Updating the model to allow for possible chances in the test specifications
for the next planning period;

3. Adapting the model to account for the current composition of the item pool
(see below);

4. Updating the cost function, using the numbers of items written in the pre-
ceding period to reestimate the function in (5.14);

5. Running the model using an integer solver to determine the numbers of new
items that have to be written for the next planning period.

The update in Step 3 of this procedure consists of a simple operation. Let p

denote the planning period for which the update is needed, ngp Y the numbers

of items in the pool available at point d at the end of period p — 1, and mgz) the
decision variables for the additional numbers of items in the update of the model
in (5.4)—(5.11) for period p.

Optimal values for xfﬁ) can be calculated using the updated version of the

model with the constraint
= (1) .
Soab, >0/, d=1,..,D. (currentitem pool) (5.15)
t=1

added to it. This constraint is necessary to account for the attributes of the current
items in the pool. (It thus also accounts for the actual values of the item difficulty
and discrimination parameters produced by the item writers!)

The projection of the additional numbers needed for p follows from the fol-
lowing updates of (5.1) and (5.3):

T
NP =3 nPat, (5.16)
t=1



65

and

(NP NP, (5.17)

5.4 Simulation Study

The goal of this study was to assess the impact of the management tool above on
the quality of a testing program. The quality was measured both by the average
costs per written item and the maximum number of tests that could be assembled
from the pool. Since these two variables are also dependent on the quality of the
initial item pool and the quality of item writing, these two factors were also varied
in this study. For the evaluation of the measurement quality of the tests assembled
in this study, see the end of this section.

The study was run in the form of a computer simulation of several scenarios
for a fictitious testing program for one of the section of the Law School Admission
Test (LSAT). The program was assumed to consists of six testing periods per year,
with six versions of the test needed for each period. The size of the item pool was
fixed at 350 items. The test-assembly model consisted of 40 constraints on such
attributes as test length, content distribution, and word count. The test versions
were not allowed to have any overlap in items. The set of test versions for each
testing period was assembled simultaneously; that is, we first tried to assemble a
set of six versions. If this problem was not feasible, we tried to assemble a set of
five, and so forth.

The cost function was the one in (5.14) estimated from a previous pool of
2,436 items. The function was smoothed using the regression method referred to
above. All items had been calibrated using the 3PL model but we omitted the
guessing parameter in the definition of the design space and used the average
value for this parameter in the previous pool to calculate the values of the item-
information functions in the design model. The test-information function was con-
trolled using the actual bounds for the function for the LSAT at § = —1.2, 0.0,
and 1.2.

The size of each test was 50 items. Once an item was used in a test, it was
permanently removed from the pool and replaced by a new item. Each new period
thus began with a complete pool of 350 items. In principle, the maximum number
of forms possible from the pool was thus seven per testing period. However, to
make the study realistic we simulated attrition of the item pool due to items be-
coming outdated, showing parameter drift, detection of flaws in their formulation,
and so on. Way, Steffen and Anderson (1998) report that the number of such items
should be expected to be approximately 5% of the inventory. This percentage was
used in our study.
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Table 5.1. Eight different scenarios in simulation study.

Scenario Initial Pool Management Item Writing

1 + + +
2 + + -
3 + +
4 + - -
5 - + +
6 - + -
7 - - +
8 - - -

The design of the study was the fully balanced three-factor design in Table
5.1. Each factor had two levels which we classified as optimal (+) and less than
optimal (—). More specifically, the levels were implemented as follows:

1. Initial pool. The optimal initial pool was assembled using a blueprint calcu-
lated according to the model in (5.4)—(5.11), whereas the less than optimal
pool was randomly drawn from the previous pool.

2. Management. Optimal item-pool management was based on the dynamic
version of the design model with a new update for each testing period, as
proposed in this paper. For the conditions with less than optimal manage-
ment, we sampled the blueprints for the new items from the old item pool.
That is, for each new item needed, we sampled an item from it, classified
its attributes, and used the list of attributes as the blueprint for the new item.
This level of management simulates a continuation of the current practice
without any explicit attempt to improve or even intervene.

3. Item writing. It was assumed that all content attributes in the item blue-
prints were realized but the authors had two levels of command as to the
quantitative attributes. For both levels we perturbed the attribute values in
the blueprint randomly, but used a level of random error for the less than op-
timal conditions approximately twice as large as for the optimal conditions.
For example, the random error in the difficulty parameter was uniformly in
[.15—.20] for the optimal level of item writing, but in [.20—.30] for the less
than optimal level.

Each combination of levels of these three factors was implemented using the
following steps:

1. The initial pool was assembled,
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2. The set of tests for the first period was assembled simultaneously;

3. The items selected for a test were removed from the pool. Also, from the
remaining items 5% was removed to simulate attrition;

4. The blueprint for the items to be added to the pool for the next period,

5. New items were written to this blueprint by randomly disturbing the values
of the quantitative parameters in the blueprints.

The simulation of each scenario was repeated five times, and the results were
averaged to get stable estimates of the impact of the scenario on the item-writing
costs and the number of feasible tests for each period. It should be noted that
each test assembled in this study was constrained by the actual bounds on the test-
information function for the LSAT. Thus, the number of feasible tests in a scenario
also evaluates the measurement quality made possible by the item pool.

5.4.1 Results

The results are presented in Table 5.2. Of course, the case with all three factors at
optimal level (scenario 1) yielded the best results both for the number of feasible
tests and the average cost per item.

Table 5.2. Number of feasible test forms and average costs per item in each planning
period for the eight scenarios.

Initial Pool: Optimal

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Period Forms Costs Forms Costs Forms Costs Forms Costs
1 6.0 17 6.0 A7 6.0 17 6.0 17
2 6.0 17 6.0 .50 4.6 47 3.8 1.63
3 6.0 17 6.0 38 33 47 2.0 1.73
4 6.0 17 6.0 .50 2.2 47 1.1 1.45
5 6.0 .17 6.0 37 2.2 49 1.0 1.56
6 6.0 17 6.0 42 1.6 S1 0.4 2.13
Initial Pool: Less Optimal
Scenario 5 Scenario 6 Scenario 7 Scenario 8
Period Forms Costs Forms Costs Forms Costs Forms Costs
1 5.0 48 5.0 48 5.0 48 5.0 48
2 33 .17 3.0 .39 3.4 48 2.6 1.71
3 4.4 .19 4.0 .65 2.6 47 1.8 1.09
4 5.2 18 4.2 .66 2.0 Sl 1.2 1.36
5 5.4 .18 4.4 41 1.1 45 1.0 1.26
6 6.0 17 3.0 .53 1.1 .50 0.2 1.53
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For the optimal pool, the main impact of optimal management but less than opti-
mal item writing (scenario 2) was an increase in the item-writing costs, whereas,
for the converse case of less than optimal management but optimal item writing
(scenario 3), the main effect was a systematic decrease of the number of feasible
tests. When the less than optimal levels of management and item writing were
combined with a less than optimal initial item pool (scenarios 6 and 7) both ef-
fects occurred. A strong interaction effect between item-pool management and
item writing was observed both for the optimal initial item pool (scenarios 1-4)
and the less than optimal initial pool (scenarios 5-8). As a matter of fact, for these
two cases, it was no longer possible to compensate bad management by good item
writing (or bad item writing by good management), and both the average costs
and number of feasible tests deteriorated quickly.

5.5 Concluding Comments

The previous results are from one study only, and we should be careful not to
overgeneralize. Nevertheless, we believe they underscore the importance of high
quality item-pool management. For a testing program, we expect the number of
feasible tests per testing period to be the most important success parameter. As
Table 5.2 shows this number was always considerably higher for the cases with
optimal management (scenarios 1, 2, 5, and 6) than with less than optimal man-
agement (scenario 3, 4, 7, and 8). The strong interaction between item-pool man-
agement and item writing in Table 2 also points at the critical importance of good
management. It turned out to be impossible to compensate bad management by
good item writing.

Further, the results show that once the number of feasible tests start to de-
crease for a scenario, it tends to keep decreasing. This makes sense because of the
cumulative nature infeasibility over time. If a set of tests is assembled, the good
items in the pool disappear, while the bad items remain. As a result, the likelihood
of a lower number of feasible tests in the next period increases.

The last results thus confirm the observation in (Way, Steffen, & Anderson,
1998) that item pools tend to decrease in quality over time , and, consequently,
an increasing number of new items have to be produced to maintain the testing
program. The management tool presented in this paper is one instrument that could
be used to break this tendency.
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Unraveling the Causes of Underexposure
in Automated Test Assembly

Abstract

Not all items in the pool can be selected by test assembly algorithms; these items
are referred to as underexposed items. The research on item pool management
described in the previous chapter suggests that if the attributes of underexposed
items are undesirable, they would still not be chosen in the next assembly. For item
pool management, it would be of interest to know why some items in the pool are
underexposed. In this paper, we explore some possible methods to unravel the
causes of underexposed items, and one of the methods is used in the empirical
study. For this case, the results indicate that there is a strong interaction between
the attributes of items critical to feasibility and the attributes of other items. Criti-
cal items always have to be selected to yield feasible tests, therefore their attribute
values caused underexposure of the other items.

Key words: Underexposure, test assembly, item pool management.
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6.1 Test Assembly

Test assembly can be formulated as an instance of combinatorial optimization.
The general formulation of an optimization problem consists of two components,
namely a set of constraints and an objective function. Both components are linear
functions of decision variables. The goal of optimization problems is to find val-
ues for decision variables, also refered to as solutions, that satisfy the constraints
and optimize the objective function. In a typical automated test assembly (ATA)
problem, to decide whether an item will be taken for the test or not, decision vari-
ables are binary. ATA can be modeled in various ways, but in general it takes the
following form:

I
Maximize Z Ci%; 6.1
i=1
subject to the constraints:

I
> aijmi <bj, §=1,2,.,7 (6.2)

i=1
x; €{0,1}, 1=1,2,...,1 (6.3)

where ¢; represents the contribution value of item ¢ to the objective function (e.g.,
item information), a;; the attribute value of item ¢ with respect to attribute j (e.g.,
categorical attribute such as item type, quantitative attribute such as word count,
and logical attribute such as item-enemy), and b; the bound on the constraint re-
lated to attribute j (e.g., total number of item on a certain category, total word
count, expected response time).

A feasible solution to this problem is a set of items that meets all constraints. It
is possible to have more than one feasible solution. However, for an optimization
problem, the main goal is to find an optimal solution, i.e., a feasible solution that
yields the best value for the objective function.

Whether or not an item is selected for a test depends on several factors such
as the attribute values of an item, the attribute values of the other items, and the
methods used to assemble the test. An item might not be chosen if it has undesir-
able attributes value (e.g., a very high or very low difficulty parameter, too many
or too few words) or if there are other item-combinations that perform better with
regard to the objective of the test. Likewise, an item might be chosen if it has at-
tribute values that are less frequent in the pool while this attribute is needed for the
test. The test assembly method also plays a role. If the tests are assembled one by
one, instead of simultaneously, the best items will be taken first, and some items
that otherwise could have been taken will be left in the pool.

These factors can be related to each other, and therefore, it is often not possible
to determine beforehand which item will be taken for the test.
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6.1.1 Underexposed Items

Items that are seldom or never selected for the test are referred to as underexposed
items. Little is known about these items in the pool. Research on item pool man-
agement (Ariel, van der Linden, & Veldkamp, 2004; Way, Steffen, & Anderson,
1998) suggest that if the attributes of underexposed items are undesirable, they
would still not be chosen in the next assembly when new items have been added
to the pool. Besides, if they were not chosen because other item-combinations
performed better, they will still not be chosen in the next assembly when the new
items have the same quality as the retired ones. In the simulation study, Ariel, van
der Linden, and Veldkamp showed that the quality of the item pool tends to deteri-
orate even when desirable items are added into the pool. Recovery is only possible
when desirable items are added continuously to the pool. This may be hard to do;
in practice, we typically see a loss of quality over time that has to be compensated
by the production of large number of items (Way et al., 1998).

For item pool management, it would be interesting to know why some items
in the pool are underexposed. In this study, we will explore some possible methods
to unravel the causes of underexposed items. One of the methods will be applied
in the empirical study, and it will be shown how the results can be used to improve
item pool management.

6.2 Some Methods to Analyze Item Pools

If there is no solution for the assembly problem, the problem is infeasible. (That
is, a test that meets all specifications does not exist.) There are several possibili-
ties why a solution does not exist. For example, it can be impossible because of
conflicting constraints, errors in item-code, and deficiency in the item pool (Huitz-
ing, 2003). Practical assembly problems are often confronted with numerous con-
straints. It is not easy to identify which constraints cause infeasibility.

In order to obtain one or more tests, assuming that there is no mistake in the
model formulation, nor in item-coding, items in the pool have to be replaced or
the test specifications need to be modified by relaxing some constraints. When
changing the test specifications is impossible, it becomes necessary to improve
the quality of the item pool. Analysing and evaluating an item pool is one step
needed to reach this goal.

In test assembly, a group of items needs to be selected, instead of a single item.
Whether an item will be selected also depends largely on the attribute values of
other items in the pool. If the attribute values of the rest of the items are poor, even
an item with superior attribute values might not be chosen. In other words, item
pool composition plays a key role. The success of an automated test assembly is
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determined by the quality of item pool as well. If the item pool is poor, no method
will be capable of assembling the tests.

Ideally, an item pool should contain enough items for each content category.
It is also preferable for the item difficulty distribution to match the distribution
of the examinees’ abilities. Other quantitative attributes such as word count and
expected response time should also be adequately represented by items in the pool,
so that requirements on these attributes can be met. To know whether an item pool
is ideal, test assembly can be utilized. The results of the assembly indicate whether
a given pool is able to produce feasible tests.

In reality, item pools suffer from unbalanced item usage. Some items appear
to be favored by a test assembly algorithm. (If a small number of items is highly
exposed, it will threaten the security of the testing.) Another consequence is that
the pool cannot yield the expected number of test forms. In many cases, it will be
beneficial to evaluate the pool; to find out, for example, which items are critical to
the feasibility, or why some items are not selected for tests, or why the pool cannot
produce a certain number of tests. Based on this evaluation, attempts can be made
to improve the quality of the pool. Various methods can be applied to analyze an
item pool.

6.2.1 Infeasibility Analysis

Infeasibility analysis is a mathematical technique to diagnose why a feasible solu-
tion cannot be found for a certain ATA model. The main focus of this analysis is
on finding a smallest set of constraints that together cause the infeasibility, but for
which any proper subset gives a feasible model. This set is known as an irreducible
infeasible set or IIS. To yield a feasible model, one or more appropriate constraints
in an IIS should be changed or removed from the model. In many cases, an infea-
sible model has more than one IIS with possibly overlap of constraints among
IISs.

It is not easy to find an IIS, especially if the model is complex, such as when
its variables are integer or binary. A general approach to finding IISs is to solve the
infeasible model iteratively by observing how the elimination of one constraint af-
fects the infeasibility, until a smallest number of constraints that cause infeasibility
is found. Such approach is called filtering; many variations of filtering exist. This
approach can be burdensome because the order of the constraints eliminated from
the model can influence the speed of finding an IIS. Another approach is called
the additive method, in which the constraints in an infeasible model are ordered.
Detailed explanations for both algorithms can be found in, for example Guieu and
Chinneck (1999). For automated test assembly problem, several studies have been
conducted to develop more practical methods to find IISs (e.g., Timminga, 1998;
Huitzing, Veldkamp, & Verschoor, 2005).
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Fundamental in infeasibility analysis are the constraints, and not the objective
function, as they shape the feasible region. For an integer or binary model, it may
be possible that the feasible region does not include integer values; the model is
then infeasible. Or, some constraints may conflict so that a feasible region does
not exist. Huitzing (2003) observed that one possibility why the feasible region
cannot be formed is because of the lack of contributions of item-attributes to some
constraints. In other words, solutions often cannot be found because the item pool
cannot provide certain items sufficiently to satisfy the test specifications.

Infeasibility analysis can be employed to analyze an item pool. Particularly,
infeasibility analysis is useful when applied to the portion of an item pool that
remain after all feasible tests have been removed. It then helps us to find out which
constraints in the test assembly are critical with respect to feasibility. Because
constraints are governed by item-attributes, finding IISs from these items may
tell us which item attributes are critical to feasibility. Thus, it may be possible
to unravel the cause of underexposed items by applying infeasibility analysis to
them.

6.2.2 Discriminant Analysis

Discriminant analysis is a statistical technique that can be employed to discrimi-
nate between groups, on the basis of some characteristics or variables. The basic
quantity is a function known as a canonical discriminant function. It can be written

as follows.
J

fg =g+ Z QgjZj (6.4)
j=1

where f, is the discriminant function for group g, a denotes the coefficients, z
denotes the variables, and .J is the number of variables. The number of functions
is determined by the number of groups (minus one) or variables, whichever is
smaller. Suppose we have more than two groups and variables. For the first func-
tion, o should be derived in such a way that the group means on the function are
as different as possible. The same idea is also used to derive the coefficient «
for the second function, given the condition that the first and the second function
should not be correlated, and so on. In other word, the coefficients should make
every function orthogonal. The literature on discriminant analysis provides some
guidance on how to obtain the coefficients (e.g., Klecka, 1980; McLachlan, 1992).

The distribution of group means with respect to the discriminant functions
can be observed by plotting their values in the space spanned by these functions.
In this way, one can easily examine group differences visually, if the number of
functions is lower than four. In general, not all functions are useful, and in many
cases, two or even one function is sufficient (Klecka, 1980).
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As for the case of item pool analysis, selected and unselected items can be sep-
arated into different group, while the item attributes are used as variables. Note
that the inclusion of many variables in the functions does not always guarantee
discriminating power of them, since there are variables that are actually redundant
and can complicate the analysis. Several procedures exist to determine which vari-
ables are potentially useful. One possible use of discriminant analysis is to reveal
which variables are the most powerful discriminators. Therefore, it can be used
to reveal which item attributes play important role in determining whether or not
an item is selected. Furthermore, because the discriminant function could explain
the difference between selected and unselected items, it may help us to reveal the
causes of underexposed items.

6.2.3 Sensitivity Analysis

Sensitivity analysis is a method to observe how the variations in the input data
change the optimal solution. This analysis is motivated by the fact that the data
might change over time, for example, unpredictable quality of some input data.

The application of sensitivity analysis to item pool analysis is relatively straight-
forward. In this case, one needs to have a blueprint for the pool that is considered
as ideal. This ideal pool does not necessarily have to be an existing pool. For ex-
ample, one can use an item-pool blueprint (van der Linden, Veldkamp, & Reese,
2000; Veldkamp & van der Linden, 2000) as an ideal pool. An item-pool blueprint
specifies which items should be in the pool, in order for the item pool to function
optimally.

The composition of a given pool can then be compared to that of an ideal pool.
Certainly, it is desirable to have a close resemblance between the two pools. A
standard function for distance measurement can be used to observe the differences
between a given pool, p, and an ideal pool, b, and can be formulated as follows:

opb(q) = ap — @ (6.5)

where 0,5 (¢) is a function of the difference between pool b and p for item-attribute
g, q» the number of item in pool b with respect to attribute g, and g, the number of
item in pool p with respect to attribute q.

In reality, a pool may be far from ideal (6, (q) # 0). However, this compari-
son enables us to identify possible cause of underexposed items. A positive value
of 6,,(¢) shows that, for attribute g, its number of items in the given pool is abun-
dant, and test assembly algorithms will not have difficulty to select items to meet
test specifications for attribute g. When the number of 6y, (¢) is much larger than
expected, many items with attribute ¢ will not be selected. On the other side, the
negative value of &, (q) indicates that the pool lacks items with attribute ¢, which
makes such items become critical to feasibility. Veldkamp (2005) has illustrated
the use of item-pool blueprint to identify critical features on item pool.
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Sensitivity analysis calculates several variations for the value of §,,(g), and
their impact on the optimal solution; in this case optimal can be seen as a minimum
number of underexposed items in the pool. In a more advanced setting, sensitivity
analysis can measure possible interaction (Saltelli, Tarantola, & Chan, 1998), not
necessarily linear, among input parameters, in this case item-attributes.

6.2.4 Item-Attribute Analysis

One can also assess the quality of an item pool by means of optimal test assembly.
The results of test assembly are, for example, a maximum number of feasible tests
that the pool can produce and the test information value. The maximum number of
feasible tests shows how many items in a given pool can be of use; thus it reveals
whether the pool is efficient.

To analyze an item pool, it is important to observe which item attributes con-
tribute to feasibility and to optimality, relative to other item attributes in that pool.
This is because a feasible solution is constructed by a linear combination of item
attributes values, not by a single combination of item attributes. When an item has
an undesirable attribute value (or, an undesirable combination of attribute values),
the question is whether other items in the pool can compensate for this undesirable
value. To verify which attribute values are critical for feasibility or optimality, the
test assembly problem can be solved by constraining item ¢ (i € I) to be included
to test ¢ (¢ € T'), namely by adding the following constraint to the test assembly

model:
T
> ap =1 (6.6)
t=1

On the other hand, an item may have an attribute value that cannot be easily
compensated by other item attributes. This happens, for example, when the test
specifications demand a certain number of items with such an attribute, but their
number in the pool is low. In this case, such items are said to be critical to fea-
sibility, and the success of the assembly depends on the availability of this kind
of items. To investigate this possibility, the test assembly problem can be solved
by constraining item i to be excluded from test ¢ (¢ € T'), namely by adding the
following constraint to the test assembly model:

T
> wu=0 (6.7)
t=1

The results of both approaches can be evaluated using feasibility and optimal-
ity criteria. They can be plotted as a function of the item attributes, to observe
which attribute contributes significantly to each criterion. In the current study, we
will use this analysis method.
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6.2.5 Discussion

All methods discussed in this section attempt to analyze item pools. Although
they differ systematically, they all examine combinations of item-attribute values
to find out the causes of underexposed items. Actually, the strengths and the weak-
nesses of the pool should be evaluated based on combinations of item-attributes.
For example, in the discriminant analysis, it is clear from Equation 6.4 that it is
almost impossible to examine only one item attribute, as the discriminant function
requires a (linear) combination of item attributes to judge which item-attribute is
a strong discriminator.

There are also methods that can be used to judge which item-attribute plays
an important role in determining whether or not an item will be selected. Example
of such methods includes artificial learning methods, such as neural networks,
which are trained to recognize the characteristics of an item pool that are needed
to function efficiently. For the methods to learn well, wide variations on the quality
of pools are necessary. One difficulty with the application of such methods is that
it is required to extract some knowledge (Andrews, Diederich, & Tickle, 1995) to
understand the mechanism underlying such methods, since most of them work as
a black box.

6.3 Empirical Study

In this study, item-attribute analysis was used. On one hand, we would investigate
what would happen if one item was forced to be taken for the assembly. Partic-
ularly, we would like to know how serious it would affect the assembly model.
Two possibilities that could happen were (1) the model would be infeasible, or (2)
the objective value would vary. On the other hand, it would be also necessary to
compare the results by forcing one item to be out from the assembly model, to
find out whether an item was critical for the feasibility.

As an illustration, the general model in (6.1)-(6.3) is detailed in the following
test assembly model (van der Linden & Boekkooi-Timminga, 1989).

Maximize y
subject to:

I
S @i L(0) >y, Vi Vk (6.8)
=1

I
Y wy=mn, Vi (6.9)
=1
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ney < Y wig <nl, vt (6.10)
e’
I
0y <> wixqg <q", (6.11)
=1
T
w1, Vi (6.12)
t=1
zi € {0,1} (6.13)
y>0 (6.14)

where lower bound on test information was maximized at every theta value for
each test ¢ (Constraints 6.8), each test had exactly the same number of items (Con-
straints 6.9), upper and lower bound for item categorical attributes C' and quanti-
tative attributes () were defined (Constraints 6.10 and 6.11, respectively), no item
was shared among the tests (Constraints 6.12), and decision variables were binary
to denote whether an item ¢ was selected for test ¢ (Constraints 6.13). Categori-
cal attributes used in the simulation study were item type and answer key, while
quantitative attribute was word count.

In this research, the criterion for feasibility was the maximum number of tests
that can be assembled. It was required to assemble all tests simultaneously, so that
every single test would gain similar quality. These ways would ensure optimal
item usage (the number of underexposed items would be low). With the advent
of computer and computational softwares, it is doable to assemble a maximum
number of tests simultaneously (Ariel, Veldkamp, & Breithaupt, 2004).

Tests were maximized at three theta values, namely at -1.2, 0, and 1.2. This
model was solved in AIMMS 3.4 (Paragon Decision Technology) using CPLEX
9 (ILOG) as an MIP solver. The operational item pool had 300 items, and four
feasible test forms could be assembled with an optimal y value equal to 21.87. The
test length was equal to 50 items. Based on this initial assembly, 200 items (50x4)
were selected for the tests whereas 100 items were not. Based on the assembly
results, the items in the pool were divided into two exclusive sets, to separate items
that were taken for the tests from those that were not. Specifically, we assigned
unselected items to /7 and selected items to Ks. One interesting benefit of this
approach was that underexposed items (/K1) was clearly identified. Two different
conditions were examined in this study, each with different constraints added to
the model.
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Condition 1 Solve the assembly model by forcing the inclusion of
itemi, 1 € Ky

T
dax=1, i€k (6.15)
t=1

Condition 2  Solve the assembly model by forcing the exclusion of
item 4,1 € Ko

T

D =0, i€ Ky (6.16)
t=1

6.4 Results

The maximum number of feasible test forms and the value of the objective func-
tion were used to observe the impact of constraining an item to be in or be out of
the tests. Specifically, we examined the relationship between each of the item at-
tributes (item discrimination, item difficulty, word count, and item type) and these
criteria. Figure 6.1 shows the relationship between item attributes and the number
of feasible forms, and Figure 6.2 between item attributes and the objective value.

In Figure 6.1, for Condition 1, where every item not taken was forced to be
taken in the assembly, the assembly model was still feasible regardless of whatever
kind of item included into the tests. However, for Condition 2, where every item
taken was forced not to be in the assembly, the exclusion of some items cause
infeasibility. From Figure 6.1 we can see immediately that the type of item played
arole in determining whether the model was feasible. The fact that item type 4 was
always chosen for the tests showed that this item type was critical in influencing
the feasibility. The exclusion of this item type always resulted in infeasibility, i.e.,
a lower number of feasible test forms.

In Figure 6.2, only the objective values from four feasible test forms are
shown, in order to provide a fair comparison. This is because, when the num-
ber of feasible forms is lower, the objective value becomes higher as the algorithm
has more choices in selecting which items can contribute better to the objective
function. In this study, the objective values from the infeasible problem (i.e., only
able to produce three feasible test forms) was approximately 26.12.

The inclusion of items not taken in to the tests (Condition 1) deteriorated the
objective value. The objective value showed a linear relationship with item diffi-
culty; the easier the item, the lower the contribution to the objective value. How-
ever, the results indicated a relatively small (about 0.04) difference between the
objective values. For Condition 2, both item discrimination and item difficulty in-
fluenced the objective value. When a high discriminating item was excluded from
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the tests, the objective value dropped to a lower level. The same also happened
when an item of relatively high difficulty was excluded. Unlike Condition 1, the
differences among the objective values were quite high (approximately 0.6).

6.5 Discussion

In this study, the optimal solution gives the highest value for the test information,
because items with better quality are selected. However, the results for Condition 1
show that the inclusion of underexposed items can still produce a feasible solution.
Although their inclusion deteriorates the objective value, the results showed that
the differences from optimal solution were relatively small (optimal value is 21.87,
while ’the worst value’ is 21.83). This may suggest that underexposed items can
be used for the tests, for instance, to save the better items for later use.

On the other hand, there are items that appear to be critical for feasibility.
Omitting one of them can lead to infeasibility, as was shown by the results for
Condition 2. Because the test assembly algorithm always had to select critical
items, their other attributes influenced which other items in the pool could be
selected. For example, if critical items had a relatively high word count, items
with low word count would have a higher chance to be selected.

The results indicated that the attribute values of critical items may have caused
underexposure of the other items. Different reasons exist for why certain items be-
come critical. For example, poor item writing practices, possible interaction within
item attributes, or less optimal item pool management. To reduce the number of
underexposed items, it seems reasonable to consider limiting the impact of crit-
ical items. For example, by ensuring that they are well represented in the pool.
Intuitively, this requirement somehow resembles the necessity to balance between
demand (test specifications) and supply (item pool composition). When there is no
balance between demand and supply, there could be a strong interaction between
those item attributes that are in surplus and those that are deficient. The task of
item bank management is to take these dependencies into account and to balance
the composition of the item pool.
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Figure 6.1: Plots of item attributes with respect to the number of feasible test forms.
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Summary

An item bank is a collection of items (test questions) along with their psycho-
metric parameters, such as item-discrimination, item-difficulty, and item-guessing
(for the 3PL IRT model), and other attributes such as word counts, categorical at-
tributes, expected response times, and the dates of administration. From an item
bank, tests are assembled according to test specifications. Mathematical program-
ming techniques or heuristic methods can be employed to select items from the
bank. Because of this, item bank is a valuable resource for any testing program
whose tests are offered on a continual basis.

It is desirable to optimize item bank usage for two reasons. First, for security
reasons. The continual use of portions of the bank will increase the exposure of its
items and, in turn, threat the integrity of the item bank. Second, for efficiency rea-
sons. Much effort and resources have been invested in writing, producing, pretest-
ing, and calibrating the items, and therefore it is important to get a maximum
return on the investment.

However, in practical testing situations, it is often impossible to use all items
for the tests. Especially when the tests have to meet a certain quality level, for
example, high information over a specific abilities range, only items qualified for
this level will be selected. Forcing the use of items of lower quality will deteriorate
the quality of the tests. The value of the test information function (TIF), the bias
and the variance of the ability estimates are the common criteria to measure the
quality of the tests.

The focus of item-bank management is on how to optimize item usage while
ensuring that the tests’ quality level will still be acceptable. This thesis proposes
various methods to improve item-bank design and management.

Automated test assembly (ATA) can help test specialists to address some of
these concerns. For paper-and-pencil tests, ATA methods focus, for example, on
the assembling of multiple parallel test forms. For computerized adaptive tests
(CAT), ATA methods are manipulated in such a way that the items will not be
selected beyond a tolerable rate. (The last methods are known widely as item-
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exposure control algorithms.). In Chapter 1, general test assembly methods for
various testing formats are described.

However, many item-exposure control algorithms focus only on items with su-
perior quality, as they tend to be chosen for the tests. In Chapter 2, we demonstrate
the use of rotating item pools, as an alternative way to promote more uniform item
usage. The basic idea underlying this approach is that the number of popular items
should be limited in the pool, in order to promote the use of less popular items.
In this approach, a master pool is divided into several parallel subpools. These
pools are rotated among the testing sites to realize desirable exposure rates for the
items. Gulliksen’s method (1950), in which a test is split into two parallel halves,
is adopted to ensure that the resulting subpools possess the same psychometric
quality. Furthermore, we also demonstrate the possibility to construct overlapping
subpools, in which some of the items are shared. The results show that overlapping
subpools dramatically increase item usage. Though this benefit is obtained with
larger errors for the ability estimates, it can easily be compensated, for example,
by an increase in the length of the test.

To a large extent, the composition of an item bank determines whether its
items can be used efficiently. If the item bank contains many flawed items, or
items with less desirable attributes, no test assembly method will be capable of
improving item usage. Especially for adaptive testing, where items are selected in-
dividually, the selection algorithms tend to magnify the effect of small differences
in the value of the attributes of items. Even when this problem can be lessened
through the use of exposure control algorithms, there will always be a trade-off
between item exposure and measurement precision. Our resolution toward this
problem is to design a CAT bank such that it contains only items that are needed.
In Chapter 3 we show that a shadow-test approach can be utilized to construct a
CAT bank. A shadow-test approach is an item-selection method for a CAT where
a set of items (a linear test) is assembled at every ability estimation but only one
item from it is administered. In this approach, the problem of selecting an adaptive
test is viewed as the assembly of a series of linear tests, and therefore, it is reason-
able to construct the CAT’s pool as a set of linear tests. An empirical example with
a master pool from the Law School Admission Test (LSAT) yielded a CAT with
nearly uniform bias and mean-squared error functions for the ability estimator and
item-exposure rates that satisfied the target for all items in the pool.

The need to strictly control the content and the quality of a test has given
rise to the practice of multistage testing (MST). MST is adaptive testing with a
predetermined number of paths. In this testing, instead of administering a single
item, a set of items (testlet) is administered at every stage of ability estimation.
The limited number of paths enables the test specialists to inspect carefully the
content and the quality of the tests before they are administered. Testing programs
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with this format require a large number of testlets to provide parallel versions of
the tests. This is important to secure the test.

In Chapter 4 we demonstrate the transformation of an item pool to a testlet
pool. The assembly of testlet pool is similar to the assembly of a set of maximum
numbers of parallel linear tests. Such an approach can promote more uniform
item usage, and when the assembly is done simultaneously, every testlet will have
a comparable quality. A portion of the testlet pool will be operational, while the
rest can be used for, in combination with new pretested items, future test assembly.
In a simulation study, we demonstrate the use of different weights to control the
importance of some testlets, with regard to their difficulty level.

In general, operational testing programs suffer from fluctuations in the qual-
ity of their item banks. Fluctuations are unavoidable, as new items are added and
some items are removed (either permanently or temporarily). Items are removed
because they have been used frequently, or because they appeared to have desir-
able attributes for the tests. In addition, some items are removed if they show
parameter drift or become obsolete. The fluctuation in the quality of an item
bank makes the task of maintaining continuous testing of uniform quality hard
to achieve. This situation has motivated us to develop a tool to maintain the qual-
ity of an item bank. In Chapter 5, we use a simulation study to observe the efficacy
of an item-pool blueprint in maintaining the quality of a pool over several testing
periods. The results indicate that an item-pool blueprint can be used effectively to
maintain the pool. The simulation also reveals that once the quality of a pool dete-
riorates, extra efforts (in this study: both usage of an optimal item-pool blueprint
and an excellent level of item writing) are needed to restore its quality.

The task of item-pool management is difficult mainly because it involves un-
certainty in the quality of the future items. To some extent, the quality of items
left in the pool can influence the quality of the future assembly. If an item pool
is dominated by items that are not chosen in earlier assembly, assuming that the
assembly was done optimally, the quality of the future tests would be worse if new
pretested items could not compensate for the low quality of old items.

In Chapter 6, an attempt is made to unravel the causes of underexposure of
some items. Several methods are presented. The results of the simulation study
show that, unless the test information has to meet a target exactly, the inclusion
of underexposed items will still yield feasible tests. On the other hand, the results
also show that there are critical items in a pool. Apparently, these items always
have to be selected to yield feasible tests. The attribute values of these critical
items determine whether or not other items can be selected for the tests. The re-
sults suggest that their presence should be optimized to prevent an undesirable
interaction between attributes of the items in the pool.
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Samenvatting

Een itembank is een database waarin een verzameling items (toetsvragen) wordt
opgeslagen, met hun psychometrische parameters, zoals bijvoorbeeld het onder-
scheidingsvermogen, de moeilijkheid en de gokkans (voor het 3PL IRT model).
Daarnaast worden andere kenmerken zoals het aantal woorden, categorische ken-
merken, de verwachte responstijd en de datum van afname opgeslagen in de bank.
Uit een itembank worden toetsen samengesteld op basis van de toetsspecificaties.
Mathematisch programmerings algoritmen of heuristicken kunnen gebruikt wor-
den om individuele items uit de bank te selecteren. De itembank is daarom erg
waardevol voor een toetsprogramma waarbij toetsen op een continue basis aange-
boden worden.

Er zijn twee redenen om het gebruik van de itembank te optimaliseren. In de
eerste plaats zijn er veiligheids redenen. Vanwege de continue afname van de toet-
sen is het mogelijk dat sommige items bekend raken onder de kandidaten. Dit tast
de integriteit van de itembank aan. Daarnaast zijn er redenen met betrekking tot de
efficiéntie. Veel inspanningen en geld zijn gestoken in het schrijven, ontwikkelen,
pre-testen en calibreren van de items en het is van belang om maximaal rendement
te krijgen uit deze investeringen.

In de praktijk echter is het vaak onmogelijk om alle items in de bank te ge-
bruiken in de toetsen. Helemaal als er bepaalde kwaliteitseisen aan de toets gesteld
worden, zoals het geven van veel informatie rond een bepaald vaardigheidsniveau.
In dat geval zullen slechts items geselecteerd worden die gekwalificeerd zijn voor
dat doel. Geforceerde selectie van andere items zal de kwaliteit van de test verla-
gen. De waarde van de Toets Informatie Functie (TIF), de bias en de variantie van
de vaardigheidsschatter zijn veel gebruikte criteria voor het meten van de kwaliteit
van een toets.

De focus van itembank management ligt op het optimaliseren van het gebruik,
terwijl de kwaliteit van de toetsen op een acceptabel niveau blijft. In dit proef-
schrift worden een aantal methoden voorgesteld voor het verbeteren van itembank
design en itembank management.
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Geautomatiseerde toetsconstructie (Automated Test Assembly, ATA) kan toets
constructeurs helpen bij het oplossen van de hierboven geschetste dilemma’s. Bij
schriftelijke toetsen kunnen ATA methoden gebruikt worden om parallelle toetsen
samen te stellen. Bij computer adaptief toetsen worden de methoden dusdanig
aangepast dat ze er voor zorgen dat items niet al te vaak geselecteerd worden (deze
methoden worden ook wel exposure-control methoden genoemd). In hoofdstuk 1
worden verschillende methoden voor toetsconstructie beschreven.

Veel exposure-control algoritmen zijn vooral gericht op de kwalitatief hoog-
waardige items in de bank, omdat die het meest geselecteerd worden voor de
toetsen. In hoofdstuk 2 laten we zien hoe de methode van roterende itembanken
werkt, als een alternatieve methode voor het verkrijgen van een uniform gebruik
van de items in de bank. Het uitgangspunt bij deze methode is dat de kwalitatief
hoogwaardige items verspreid worden over de verschillende item banken, zodat
het gebruik van minder goede items wordt gestimuleerd. Bij deze aanpak wordt
een itembank opgedeeld in een aantal kleinere parallelle itembanken. Deze item-
banken roteren over de verschillende toetslocaties om op die manier de gewen-
ste exposure rate te realiseren. De methode van Gullikson (1950) wordt gebruikt
om er voor te zorgen dat de psychometrische eigenschappen van de kleine item-
banken met elkaar overeenkomen. Bovendien laten we in hoofdstuk 2 zien hoe
je een itembank kunt opdelen in elkaar overlappende kleinere banken, die een
aantal items gemeenschappelijk hebben. De resultaten laten zien dat er veel beter
gebruik wordt gemaakt van de items in de bank als de bank opgedeeld wordt in
kleinere (elkaar overlappende) itembanken. Er moet wel opgemerkt worden dat
dit voordeel behaald wordt ten koste van een grotere fout bij het schatten van de
vaardigheid. Dit kan echter gecompenseerd worden door de toets te verlengen.

De samenstelling van de itembank bepaalt in grote mate of de items efficiént
gebruikt kunnen worden. Als er veel slechte items in de bank zitten, of items met
verkeerde kenmerken, dan kan geen enkele methode ervoor zorgen dat alle items
gebruikt worden in het toetsproces. Dit effect wordt nog eens versterkt als de toets
adaptief afgenomen wordt, omdat kleine verschillen in de waardes van de item
parameters dan al kunnen leiden tot grote verschillen in exposure rates. Alhoewel
dit effect verkleind kan worden door het gebruik van exposure-control methoden,
blijft er een trade-off tussen exposure control en de grootte van de meetfouten.
Dit probleem kan opgelost worden door alleen die items in de bank te stoppen
die nodig zijn voor de toetsen. In hoofdstuk 3 laten we zien dat de shadow-test
approach gebruikt kan worden om een itembank te bouwen. De shadow-test ap-
proach is een item selectie methode voor CAT, waarbij telkens een complete toets
wordt geconstrueerd, waarvan vervolgens het beste item afgenomen wordt. Nadat
het vaardigheidsniveau is geschat wordt weer een complete toets geconstrueerd
en deze procedure wordt herhaald totdat het benodigde aantal items is afgenomen.
In deze benadering wordt het het samenstellen van een adaptieve toets gezien als
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het maken van een serie van complete toetsen. Daarom klinkt het logisch om een
itembank voor CAT te construeren als een verzameling complete toetsen. Om de
methode te illustreren is hij toegepast op de Law School Admission Test. Dit re-
sulteerde in een bijna uniforme bias en mean-squared error voor de vaardigheidss-
chatter en in exposure rates die lager waren dat de maximaal toelaatbare waarden.

De behoefte om de inhoud en de kwaliteit van een toets vooraf te control-
eren heeft geresulteerd in het multistage toetsen (MST). MST is te vergelijken
met adaptief toetsen met een van te voren vastgelegd aantal paden. In plaats van
het afnemen van een item, wordt een groepje items (testlet) afgenomen voordat
er weer een schatting van het vaardigheidsniveau wordt gemaakt. Omdat er maar
een beperkt aantal beslismomenten is en dus een gelimiteerd aantal paden, kunnen
toetsspecialisten alle combinaties van te voren controleren. Voor deze soort van
toetsen is een groot aantal testlets nodig, om parallelle versies te kunnen maken.
Dit is belangrijk voor de geheimhouding van de toets. In hoofdstuk 4 wordt een
methode gedemonstreerd voor het omzetten van een itembank in een testletbank.
Het samenstellen van testlets is vergelijkbaar met het samenstellen van een max-
imaal aantal parallelle toetsen. Deze benadering zorgt voor een uniform gebruik
van de items in de bank. Als bovendien het samenstellen van alle testlets simul-
taan gebeurt, dan hebben ze ook dezelfde kwaliteit. Een aantal testlets in de bank
wordt gebruikt voor het samenstellen van toetsen, de overige testlet kunnen ge-
bruikt worden in de toekomst. In een simulatiestudie laten we zien hoe er verschil-
lende gewichten aan testlets toegewezen kunnen worden omdat sommige testlets
belangrijker zijn dan andere, afthankelijk van hun moeilijkheid.

Operationele toetsprogramma’s hebben te lijden onder fluctuaties in de kwali-
teit van de itembank. Deze fluctuaties kunnen niet vermeden worden, omdat nieuwe
items worden toegevoegd terwijl anderen (tijdelijk) worden verwijderd uit de bank.
Sommige items worden verwijderd omdat ze te vaak gebruikt zijn. Andere wor-
den verwijderd omdat hun itemparameters veranderd zijn. Deze fluctuaties in de
kwaliteit van de bank maken goed itembank management een complexe taak.
Daarom hebben we een instrument ontwikkeld om de kwaliteit van itembanken
op peil te houden. In hoofdstuk 5 wordt een simulatiestudie gebruikt om de doel-
matigheid van dit instrument te onderzoeken. De resultaten laten zien dat een
blauwdruk voor een itembank effectief gebruikt kan worden bij het onderhouden
van de bank. De simulatiestudie laat ook zien dat extra maatregelen (optimale
blauwdruk en excellent niveau van itemschrijven) nodig zijn om de itembank te
herstellen als de kwaliteit atheemt.

Item-bank management is lastig omdat je rekening moet houden met onzeker-
heid over de kwaliteit van toekomstige items. De kwaliteit van de items in de bank
die niet gebruikt worden voor toetsconstructie hebben ook invloed op de kwaliteit
van toekomstige toetsen. Als een itembank hoofdzakelijk bestaat uit items die bij
een vorige selectie afgevallen zijn, dan zal de kwaliteit van toekomstige toetsen
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afnemen als de nieuwe items hier niet voor kunnen compenseren. In hoofdstuk
6 wordt een poging gewaagd om de oorzaken te achterhalen waarom sommige
items niet geselecteerd worden. In een simulatiestudie wordt aangetoond dat het
verplicht selecteren van deze items meestal toetsen oplevert die voldoen aan de
eisen. Aan de andere kant laat de simulatiestudie ook zien dat er een aantal items
in de bank zijn die een cruciale rol spelen bij itemselectie. Deze items moeten
altijd geselecteerd worden. De eigenschappen van deze cruciale items bepalen
of andere items wel of niet geselecteerd worden. De resultaten geven bovendien
aan dat deze items optimaal gebruikt moeten worden om ongewenste interacticef-
fecten tussen eigenschappen van items in de pool te voorkomen.
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